Although advances have been achieved in the management of type 2 diabetes, current treatment options for patients with this disease still fail to address disease progression, glycaemic control remains suboptimal and therapies are often associated with weight gain and hypoglycaemia. Thus, new antidiabetes therapies are being sought. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones that have been the recent focus of research. The physiological action of GLP-1, in particular, has demonstrated its potential in addressing the therapeutic needs of patients with type 2 diabetes. To exploit this action, liraglutide, a human GLP-1 analogue that shares 97% of its amino acid sequence identity with native GLP-1, has been developed. In a recent phase 3 trial programme (LEAD, Liraglutide Effect and Action in Diabetes), treatment with liraglutide was associated with substantial improvements in glycaemic control and low risk of hypoglycaemia. In addition, reductions in weight and systolic blood pressure were reported. There is also an indication that liraglutide is capable of improving β-cell function and increasing β-cell mass. Thus, liraglutide may overcome the limitations with current therapies and help to address the unmet clinical needs of patients with type 2 diabetes.
References
[1]
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet?1998, 352, 837–853. 9742976
[2]
Kahn, S.E.; Haffner, S.M.; Heise, M.A.; Herman, W.H.; Holman, R.R.; Jones, N.P.; Kravitz, B.G.; Lachin, J.M.; O'Neill, M.C.; Zinman, B.; Viberti, G. for the ADOPT Study Group. Glycemic durability of rosiglitazone, metformin or glyburide monotherapy. N. Engl. J. Med.?2006, 355, 2427–2443. 17145742
[3]
Hubert, H.B.; Feinleib, M.; McNamara, P.M.; Castelli, W.P. Obesity as an independent risk factor for cardiovascular disease: A 26-year follow-up of participants in the Framingham Heart Study. Circulation?1983, 67, 968–977, doi:10.1161/01.CIR.67.5.968. 6219830
[4]
Han, T.S.; Tijhuis, M.A.; Lean, M.E.; Seidell, J.C. Quality of life in relation to overweight and body fat distribution. Am. J. Public Health?1998, 88, 1814–1820, doi:10.2105/AJPH.88.12.1814. 9842379
[5]
Odegard, P.S.; Capoccia, K. Medication taking and diabetes: A systematic review of the literature. Diabetes Educ.?2007, 33, 1014–1029, doi:10.1177/0145721707308407. 18057270
[6]
Baggio, L.; Drucker, J. Biology of incretins: GLP-1 and GIP. Gastroenterol.?2007, 132, 2131–2157, doi:10.1053/j.gastro.2007.03.054.
[7]
Nauck, M.; St?ckmann, F.; Ebert, R.; Creutzfeldt, W. Reduced incretin effect in type 2 (non-insulin dependent) diabetes. Diabetologia?1986, 29, 46–52, doi:10.1007/BF02427280. 3514343
[8]
Vilsb?ll, T.; Krarup, T.; Madsbad, S.; Holst, J.J. Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia?2002, 45, 1111–1119, doi:10.1007/s00125-002-0878-6. 12189441
[9]
H?jberg, P.V.; Vilsb?ll, T.; Rab?l, R.; Knop, F.K.; Bache, M.; Krarup, T.; Holst, J.J.; Madsbad, S. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia?2009, 52, 199–207, doi:10.1007/s00125-008-1195-5. 19037628
[10]
Nauck, M.A.; Heimesaat, M.M.; Behle, K.; Holst, J.J.; Nauck, M.S.; Ritzel, R.; Hüfner, M.; Schmiegel, W.H. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J. Clin. Endocrinol. Metab.?2002, 87, 1239–1246, doi:10.1210/jc.87.3.1239. 11889194
[11]
Bulotta, A.; Hui, H.; Anastasi, E.; Bertolotto, C.; Boros, L.G.; Di Mario, U.; Perfetti, R. Cultured pancreatic ductal cells undergo cell cycle re-distribution and beta-cell-like differentiation in response to glucagon-like peptide-1. J. Mol. Endocrinol.?2002, 29, 347–360, doi:10.1677/jme.0.0290347. 12459036
[12]
Farilla, L.; Bulotta, A.; Hirshberg, B.; Li Calzi, S.; Khoury, N.; Noushmehr, H.; Bertolotto, C.; Di Mario, U.; Harlan, D.M.; Perfetti, R. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology?2003, 144, 5149–5158, doi:10.1210/en.2003-0323. 12960095
[13]
Zander, M.; Madsbad, S.; Madsen, J.L.; Holst, J.J. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: A parallel-group study. Lancet?2002, 359, 824–830, doi:10.1016/S0140-6736(02)07952-7. 11897280
[14]
Fox, K.A.; Després, J.P.; Richard, A.J.; Brette, S.; Deanfield, J.E. the IDEA Steering Committee and National Co-ordinators. Does abdominal obesity have a similar impact on cardiovascular disease and diabetes? A study of 91,246 ambulant patients in 27 European countries. Eur. Heart J.?2009, 30, 3055–3063, doi:10.1093/eurheartj/ehp371. 19778928
[15]
Nystr?m, T. The potential beneficial role of glucagon-like peptide-1 in endothelial dysfunction and heart failure associated with insulin resistance. Horm. Metab. Res.?2008, 40, 593–606, doi:10.1055/s-0028-1082326. 18792870
[16]
Bose, A.K.; Mocanu, M.M.; Carr, R.D.; Brand, C.L.; Yellon, D.M. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes?2005, 54, 146–151, doi:10.2337/diabetes.54.1.146. 15616022
[17]
Thrainsdottir, I.; Malmberg, K.; Olsson, A.; Gutniak, M.; Rydén, L. Initial experience with GLP-1 treatment on metabolic control and myocardial function in patients with type 2 diabetes mellitus and heart failure. Diab. Vasc. Dis. Res.?2004, 1, 40–43, doi:10.3132/dvdr.2004.005. 16305055
[18]
Nikolaidis, L.A.; Mankad, S.; Sokos, G.G.; Miske, G.; Shah, A.; Elahi, D.; Shannon, R.P. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation?2004, 109, 962–965, doi:10.1161/01.CIR.0000120505.91348.58. 14981009
[19]
Nystr?m, T.; Gutniak, M.K.; Zhang, Q.; Zhang, F.; Holst, J.J.; Ahrén, B.; Sj?holm, A. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am. J. Physiol. Endocrinol. Metab.?2004, 287, E1209–E1215, doi:10.1152/ajpendo.00237.2004. 15353407
[20]
Patel, A. ADVANCE Collaborative Group. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): A randomised controlled trial. Lancet?2007, 370, 829–840, doi:10.1016/S0140-6736(07)61303-8. 17765963
[21]
Knudsen, L.B.; Nielsen, P.F.; Huusfeldt, P.O.; Johansen, N.L.; Madsen, K.; Pedersen, F.Z.; Th?gersen, H.; Wilken, M.; Agers?, H. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem?2000, 43, 1664–1669, doi:10.1021/jm9909645. 10794683
[22]
Elbr?nd, B.; Jakobsen, G.; Larsen, S.; Agers?, H.; Jensen, L.B.; Rolan, P.; Sturis, J.; Hatorp, V.; Zdravkovic, M. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diab. Care?2002, 25, 1398–1404, doi:10.2337/diacare.25.8.1398.
[23]
Steensgaard, D.B.; Thomsen, J.K.; Olsen, H.B.; Knudsen, L.B. The molecular basis for the delayed absorption of the once-daily human GLP-1 analogue, liraglutide. Diabetes?2008, 57 Suppl. 1, A164 (552-P).
[24]
Agers?, H.; Jensen, L.B.; Elbr?nd, B,; Rolan, P.; Zdravkovic, M. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia?2002, 45, 195–202, doi:10.1007/s00125-001-0719-z. 11935150
[25]
Marre, M.; Shaw, J.; Br?ndle, M.; Bebakar, W.M.; Kamaruddin, N.A.; Strand, J.; Zdravkovic, M.; Le Thi, T.D.; Colagiuri, S. LEAD-1 SU Study Group. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with type 2 diabetes (LEAD-1 SU). Diabetic Med.?2009, 26, 268–278, doi:10.1111/j.1464-5491.2009.02666.x.
[26]
Nauck, M.; Frid, A.; Hermansen, K.; Shah, N.S.; Tankova, T.; Mitha, I.H.; Zdravkovic, M.; Düring, M.; Matthews, D.R. for the LEAD-2 Study Group. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin in type 2 diabetes. Diab. Care?2009, 32, 84–90, doi:10.2337/dc08-1355.
[27]
Garber, A.; Henry, R.; Ratner, R.; Garcia-Hernadez, P.A.; Rodriguez-Pattzi, H.; Olvera-Alvarez, I.; Hale, P.M.; Zdravkovic, M.; Bode, B. LEAD-3 (Mono) Study Group. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): Randomised, 52-week, phase III, double-blind, parallel-treatment trial. Lancet?2009, 373, 473–481. 18819705
[28]
Zinman, B.; Gerich, J.; Buse, J.B.; Lewin, A.; Schwartz, S.; Raskin, P.; Hale, P.M.; Zdravkovic, M.; Blonde, L. Efficacy and safety of the human GLP-1 analog liraglutide in combination with metformin and TZD in patients with type 2 diabetes mellitus (LEAD-4 Met+TZD). Diab. Care?2009, 32, 1224–1230, doi:10.2337/dc08-2124.
[29]
Russell-Jones, D.; Vaag, A.; Schmitz, O.; Sethi, B.K.; Lalic, N.; Antic, S.; Zdravkovic, M.; Ravn, G.M.; Simó, R. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): A randomised controlled trial. Diabetologia?2009, 52, 2046–2055, doi:10.1007/s00125-009-1472-y. 19688338
[30]
Buse, J.; Rosenstock, J.; Sesti, G.; Schmidt, W.E.; Montanya, E.; Brett, J.; Zychma, M.; Blonde, L. for the LEAD-6 Study Group. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: A 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet?2009, 374, 39–47. 19515413
[31]
Buteau, J.; Foisy, S.; Joly, E.; Prentki, M. Glucagon-like peptide 1 induces pancreatic beta-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes?2003, 52, 124–132, doi:10.2337/diabetes.52.1.124. 12502502
[32]
Jendle, J.; Nauck, M.A.; Matthews, D.R.; Frid, A.; Hermansen, K.; Düring, M.; Zdravkovic, M.; Strauss, B.J.; Garber, A.J. Weight loss with liraglutide, a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue. Diabetes Obes. Metab.?2009, 11, 1163–1172, doi:10.1111/j.1463-1326.2009.01158.x. 19930006
[33]
Gallwitz, B. Preclinical and Clinical Data on Extraglycemic Effects of GLP-1 Receptor Agonists. Rev. Diabet. Stud.?2009, 6, 247–259, doi:10.1900/RDS.2009.6.247. 20043037
[34]
Liraglutide (Victoza) prescribing information. Novo Nordisk. 2009. Available online: http://www.glucagon.com/pdfs/VictozaPIEU.pdf , accessed on 23 December 2009.
[35]
Noel, R.A.; Braun, D.K.; Patterson, R.E.; Bloomgren, G.L. Increased risk of acute pancreatitis and biliary disease observed in patients with type 2 diabetes: A retrospective cohort study. Diabetes Care?2009, 32, 834–838, doi:10.2337/dc08-1755. 19208917
[36]
Koehler, J.A.; Baggio, L.L.; Lamont, B.J.; Ali, S.; Drucker, D.J. Glucagon-like peptide-1 receptor activation modulates pancreatitis-associated gene expression but does not modify the susceptibility to experimental pancreatitis in mice. Diabetes?2009, 58, 2148–2161, doi:10.2337/db09-0626. 19509017
[37]
Gallwitz, B.; Vaag, A.; Falahati, A.; Madsbad, S. Adding liraglutide to oral antidiabetic drug therapy: Onset of treatment effects over time. Int. J. Clin. Pract.?2010, 64, 267–276, doi:10.1111/j.1742-1241.2009.02265.x. 19925617
[38]
Korytkowski, M. When oral agents fail: Practical barriers to starting insulin. Int. J. Obes. Relat. Metab. Disord.?2002, 26, S18–S24, doi:10.1038/sj.ijo.0802173.
[39]
Nathan, D.M.; Buse, J.B.; Davidson, M.B.; Ferrannini, E.; Holman, R.R.; Sherwin, R.; Zinman, B. Medical management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care?2009, 32, 193–203. 18945920
[40]
Rodbard, H.W.; Jellinger, P.S.; Davidson, J.A.; Einhorn, D.; Garber, A.J.; Grunberger, G.; Handelsman, Y.; Horton, E.S.; Lebovitz, H.; Levy, P.; Moghissi, E.S.; Schwartz, S.S. Statement by an American Association of Clinical Endocrinologists/American College of Endocrinology consensus panel on type 2 diabetes mellitus: An algorithm for glycemic control. Endocr. Pract.?2009, 15, 540–559, doi:10.4158/EP.15.6.540. 19858063
[41]
National Institute for Health and Clinical Excellence (NICE). Type 2 Diabetes: The Management of Type 2 Diabetes (update). Clinical Guidelines CG66, 2008. Available online: http://guidance.nice.org.uk/CG66 , accessed on 24 December 2009.