全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cell-Penetrating Peptides for Antiviral Drug Development

DOI: 10.3390/ph3030448

Keywords: cell-penetrating peptide, antivirals, antisense, drug delivery

Full-Text   Cite this paper   Add to My Lib

Abstract:

Viral diseases affect hundreds of millions of people worldwide, and the few available drugs to treat these diseases often come with limitations. The key obstacle to the development of new antiviral agents is their delivery into infected cells in vivo. Cell-penetrating peptides (CPPs) are short peptides that can cross the cellular lipid bilayer with the remarkable capability to shuttle conjugated cargoes into cells. CPPs have been successfully utilized to enhance the cellular uptake and intracellular trafficking of antiviral molecules, and thereby increase the inhibitory activity of potential antiviral proteins and oligonucleotide analogues, both in cultured cells and in animal models. This review will address the notable findings of these studies, highlighting some promising results and discussing the challenges CPP technology has to overcome for further clinical applications.

References

[1]  Haagmans, B.L.; Andeweg, A.C.; Osterhaus, A. The Application of Genomics to Emerging Zoonotic Viral Diseases. PLos Pathog.?2009, 5, 5, doi:10.1371/journal.ppat.1000557.
[2]  De Clercq, E. Antivirals and antiviral strategies. Nat. Rev. Microbiol.?2004, 2, 704–720, doi:10.1038/nrmicro975. 15372081
[3]  Rerks-Ngarm, S.; Pitisuttithum, P.; Nitayaphan, S.; Kaewkungwal, J.; Chiu, J.; Paris, R.; Premsri, N.; Namwat, C.; de Souza, M.; Adams, E.; Benenson, M.; Gurunathan, S.; Tartaglia, J.; McNeil, J.G.; Francis, D.P.; Stablein, D.; Birx, D.L.; Chunsuttiwat, S.; Khamboonruang, C.; Thongcharoen, P.; Robb, M.L.; Michael, N.L.; Kunasol, P.; Kim, J.H.; Investigators, M.-T. Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand. N. Engl. J. Med.?2009, 361, 2209–2220, doi:10.1056/NEJMoa0908492. 19843557
[4]  Wedemeyer, H.; Schuller, E.; Schlaphoff, V.; Stauber, R.E.; Wiegand, J.; Schiefke, I.; Firbas, C.; Jilma, B.; Thursz, M.; Zeuzem, S.; Hofmann, W.P.; Hinrichsen, H.; Tauber, E.; Manns, M.P.; Klade, C.S. Therapeutic vaccine IC41 as late add-on to standard treatment in patients with chronic hepatitis C. Vaccine?2009, 27, 5142–5151, doi:10.1016/j.vaccine.2009.06.027. 19559112
[5]  De Clercq, E. The design of drugs for HIV and HCV. Nat. Rev. Drug Discov.?2007, 6, 1001–1018, doi:10.1038/nrd2424. 18049474
[6]  Dykxhoorn, D.M.; Lieberman, J. Silencing viral infection. PLOS Med.?2006, 3, 1000–1004, doi:10.1371/journal.pmed.0030242.
[7]  Blackburn, G.M.; Gait, M.J.; Loakes, D.; Williams, D.M. Nucleosides and Nucleotides. In Nucleic Acids in Chemistry and Biology, 3rd ed.; Royal Society of Chemistry: Cambridge, UK, 2006; pp. 77–142.
[8]  Bharti, A.C.; Shukla, S.; Mahata, S.; Hedau, S.; Das, B.C. Anti-human papillomavirus therapeutics: Facts & future. Indian J. Med. Res.?2009, 130, 296–310. 19901439
[9]  Chander, G.; Sulkowski, M.S.; Jenckes, M.W.; Torbenson, M.S.; Herlong, H.F.; Bass, E.B.; Gebo, K.A. Treatment of chronic hepatitis C: A systematic review. Hepatology?2002, 36, 135–144, doi:10.1002/hep.1840360718. 12085357
[10]  McKeegan, K.S.; Borges-Walmsley, M.I.; Walmsley, A.R. Microbial and viral drug resistance mechanisms. Trends Microbiol.?2002, 10, S8–S14, doi:10.1016/S0966-842X(02)02429-0. 12377562
[11]  Zhu, J.M.; Trang, P.; Kim, K.; Zhou, T.H.; Deng, H.Y.; Liu, F.Y. Effective inhibition of Rta expression and lytic replication of Kaposi's sarcoma-associated herpesvirus by human RNase P. Proc. Natl. Acad. Sci. USA?2004, 101, 9073–9078, doi:10.1073/pnas.0403164101. 15184661
[12]  Duzgunes, N.; Simoes, S.; Slepushkin, V.; Pretzer, E.; Flasher, D.; Salem, II; Steffan, G.; Konopka, K.; De Lima, M.C.P. Delivery of antiviral agents in liposomes. Liposomes, Part E. Methods Enzymol.?2005, 391, 351–373, doi:10.1016/S0076-6879(05)91020-3. 15721391
[13]  Clayton, R.; Ohagen, A.; Nicol, F.; Del Vecchio, A.M.; Jonckers, T.H.M.; Goethals, O.; Van Loock, M.; Michiels, L.; Grigsby, J.; Xu, Z.; Zhang, Y.P.; Gutshall, L.L.; Cunningham, M.; Jiang, H.; Bola, S.; Sarisky, R.T.; Hertogs, K. Sustained and specific in vitro inhibition of HIV-1 replication by a protease inhibitor encapsulated in gp120-targeted liposomes. Antiviral Res.?2009, 84, 142–149, doi:10.1016/j.antiviral.2009.08.003. 19699239
[14]  Pan, W.H.; Xin, P.; Morrey, J.D.; Clawson, G.A. Self-processing ribozyme cassette: Utility against human papillomavirus 11 E6/E7 mRNA and hepatitis B virus. Mol. Ther.?2004, 9, 596–606, doi:10.1016/j.ymthe.2003.12.013. 15093190
[15]  Kumar, P.; Ban, H.S.; Kim, S.S.; Wu, H.Q.; Pearson, T.; Greiner, D.L.; Laouar, A.; Yao, J.H.; Haridas, V.; Habiro, K.; Yang, Y.G.; Jeong, J.H.; Lee, K.Y.; Kim, Y.H.; Kim, S.W.; Peipp, M.; Fey, G.H.; Manjunath, N.; Shultz, L.D.; Lee, S.K.; Shankar, P. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell?2008, 134, 577–586, doi:10.1016/j.cell.2008.06.034. 18691745
[16]  Yu, X.K.; Trang, P.; Shah, S.; Atanasov, I.; Kim, Y.H.; Bai, Y.; Zhou, Z.H.; Liu, F.Y. Dissecting human cytomegalovirus gene function and capsid maturation by ribozyme targeting and electron cryomicroscopy. Proc. Natl. Acad. Sci. USA?2005, 102, 7103–7108, doi:10.1073/pnas.0408826102. 15883374
[17]  Shiver, J.W.; Emini, E.A. Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors. Annu. Rev. Med.?2004, 55, 355–372, doi:10.1146/annurev.med.55.091902.104344. 14746526
[18]  Fattal, E.; Couvreur, P.; Dubernet, C. "Smart" delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv. Drug Delivery Rev.?2004, 56, 931–946, doi:10.1016/j.addr.2003.10.037.
[19]  Sekaly, R.P. The failed HIV Merck vaccine study: A step back or a launching point for future vaccine development? J. Exp. Med.?2008, 205, 7–12, doi:10.1084/jem.20072681. 18195078
[20]  Vives, E.; Brodin, P.; Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem.?1997, 272, 16010–16017, doi:10.1074/jbc.272.25.16010. 9188504
[21]  Frankel, A.D.; Pabo, C.O. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell?1988, 55, 1189–1193, doi:10.1016/0092-8674(88)90263-2. 2849510
[22]  Derossi, D.; Joliot, A.H.; Chassaing, G.; Prochiantz, A. The 3rd helix of the antennapedia homeodomain translocates through biological membranes. J. Biol. Chem.?1994, 269, 10444–10450. 8144628
[23]  Elliott, G.; Ohare, P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell?1997, 88, 223–233, doi:10.1016/S0092-8674(00)81843-7. 9008163
[24]  Phelan, A.; Elliott, G.; O'Hare, P. Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat. Biotechnol.?1998, 16, 440–443, doi:10.1038/nbt0598-440. 9592391
[25]  Arruda, S.; Bomfim, G.; Knights, R.; Huimabyron, T.; Riley, L.W. Cloning of an Mycobacterium-tuberculosis DNA fragment associated with entry and survival inside cells. Science?1993, 261, 1454–1457. 8367727
[26]  Lu, S.W.; Tager, L.A.; Chitale, S.; Riley, L.W. A cell-penetrating peptide derived from mammalian cell uptake protein of Mycobacterium tuberculosis. Anal. Biochem.?2006, 353, 7–14, doi:10.1016/j.ab.2006.01.044. 16620748
[27]  Pooga, M.; Hallbrink, M.; Zorko, M.; Langel, U. Cell penetration by transportan. FASEB J.?1998, 12, 67–77. 9438412
[28]  Oehlke, J.; Scheller, A.; Wiesner, B.; Krause, E.; Beyermann, M.; Klauschenz, E.; Melzig, M.; Bienert, M. Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim. Biophys. Acta Biomembr.?1998, 1414, 127–139, doi:10.1016/S0005-2736(98)00161-8.
[29]  Rothbard, J.B.; Garlington, S.; Lin, Q.; Kirschberg, T.; Kreider, E.; McGrane, P.L.; Wender, P.A.; Khavari, P.A. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat. Med.?2000, 6, 1253–1257, doi:10.1038/81359. 11062537
[30]  J?rver, P.; Langel, K.; El-Andaloussi, S.; Langel, U. Applications of cell-penetrating peptides in regulation of gene expression. Biochem. Soc. Trans.?2007, 35, 770–774, doi:10.1042/BST0350770. 17635145
[31]  Henriques, S.T.; Melo, M.N.; Castanho, M. Cell-penetrating peptides and antimicrobial peptides: How different are they? Biochem. J.?2006, 399, 1–7, doi:10.1042/BJ20061100. 16956326
[32]  Gupta, B.; Levchenko, T.S.; Torchilin, V.P. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug Delivery Rev.?2005, 57, 637–651, doi:10.1016/j.addr.2004.10.007.
[33]  Fawell, S.; Seery, J.; Daikh, Y.; Moore, C.; Chen, L.L.; Pepinsky, B.; Barsoum, J. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA?1994, 91, 664–668, doi:10.1073/pnas.91.2.664. 8290579
[34]  Morris, M.C.; Vidal, P.; Chaloin, L.; Heitz, F.; Divita, G. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res.?1997, 25, 2730–2736, doi:10.1093/nar/25.14.2730. 9207018
[35]  Troy, C.M.; Derossi, D.; Prochiantz, A.; Greene, L.A.; Shelanski, M.L. Downregulation of Cu/Zn superoxide dismutase leads to cell death via the nitric oxide-peroxynitrite pathway. J. Neurosci.?1996, 16, 253–261. 8613791
[36]  Pooga, M.; Soomets, U.; Hallbrink, M.; Valkna, A.; Saar, K.; Rezaei, K.; Kahl, U.; Hao, J.X.; Xu, X.J.; Wiesenfeld-Hallin, Z.; Hokfelt, T.; Bartfai, T.; Langel, U. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol.?1998, 16, 857–861. 9743120
[37]  Good, L.; Awasthi, S.K.; Dryselius, R.; Larsson, O.; Nielsen, P.E. Bactericidal antisense effects of peptide-PNA conjugates. Nat. Biotechnol.?2001, 19, 360–364, doi:10.1038/86753. 11283595
[38]  Meade, B.R.; Dowdy, S.F. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv. Drug Delivery Rev.?2007, 59, 134–140, doi:10.1016/j.addr.2007.03.004.
[39]  Eguchi, A.; Dowdy, S.F. siRNA delivery using peptide transduction domains. Trends Pharmacol. Sci.?2009, 30, 341–345, doi:10.1016/j.tips.2009.04.009. 19545914
[40]  Lewin, M.; Carlesso, N.; Tung, C.H.; Tang, X.W.; Cory, D.; Scadden, D.T.; Weissleder, R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol.?2000, 18, 410–414, doi:10.1038/74464. 10748521
[41]  Torchilin, V.P.; Rammohan, R.; Weissig, V.; Levchenko, T.S. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. USA?2001, 98, 8786–8791, doi:10.1073/pnas.151247498. 11438707
[42]  Rajarao, G.K.; Nekhotiaeva, N.; Good, L. Peptide-mediated delivery of green fluorescent protein into yeasts and bacteria. FEMS Microbiol. Lett.?2002, 215, 267–272, doi:10.1111/j.1574-6968.2002.tb11401.x. 12399045
[43]  Corradin, S.; Ransijn, A.; Corradin, G.; Bouvier, J.; Delgado, M.B.; Fernandez-Carneado, J.; Mottram, J.C.; Vergeres, G.; Mauel, J. Novel peptide inhibitors of Leishmania gp63 based on the cleavage site of MARCKS (myristoylated alanine-rich C kinase substrate)-related protein. Biochem. J.?2002, 367, 761–769, doi:10.1042/BJ20020386. 12137567
[44]  Lee, H.; Jefferies, R.; Watt, P.; Hopkins, R.; Sotzik, F.; Reid, S.; Armson, A.; Boxell, A.; Ryan, U. In vitro analysis of the TAT protein transduction domain as a drug delivery vehicle in protozoan parasites. Exp. Parasitol.?2008, 118, 303–307, doi:10.1016/j.exppara.2007.08.019. 17945214
[45]  Schwarze, S.R.; Hruska, K.A.; Dowdy, S.F. Protein transduction: Unrestricted delivery into all cells? Trends Cell Biol.?2000, 10, 290–295, doi:10.1016/S0962-8924(00)01771-2. 10856932
[46]  Schwarze, S.R.; Ho, A.; Vocero-Akbani, A.; Dowdy, S.F. In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science?1999, 285, 1569–1572. 10477521
[47]  Harada, H.; Hiraoka, M.; Kizaka-Kondoh, S. Antitumor effect of TAT-oxygen-dependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells. Cancer Res.?2002, 62, 2013–2018. 11929818
[48]  Bian, J.; Popovic, Z.B.; Benejam, C.; Kiedrowski, M.; Rodriguez, L.L.; Penn, M.S. Effect of cell-based intercellular delivery of transcription factor GATA4 on ischemic cardiomyopathy. Circ. Res.?2007, 100, 1626–1633, doi:10.1161/01.RES.0000269778.75877.68. 17495229
[49]  Cao, G.D.; Pei, W.; Ge, H.L.; Liang, Q.H.; Luo, Y.M.; Sharp, F.R.; Lu, A.G.; Ran, R.Q.; Graham, S.H.; Chen, J. In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J. Neurosci.?2002, 22, 5423–5431. 12097494
[50]  Jearawiriyapaisarn, N.; Moulton, H.M.; Buckley, B.; Roberts, J.; Sazani, P.; Fucharoen, S.; Iversen, P.L.; Kole, R. Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol. Ther.?2008, 16, 1624–1629, doi:10.1038/mt.2008.120. 18545222
[51]  Price, V.H. Therapy of alopecia areata: On the cusp and in the future. J. Invest. Dermat. Symposium Proc.?2003, 8, 207–211, doi:10.1046/j.1087-0024.2003.00811.x.
[52]  Stephenson, M.L.; Zamecnik, P.C. Inhibition of Rous-sarcoma viral-RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. USA?1978, 75, 285–288, doi:10.1073/pnas.75.1.285. 75546
[53]  Zamecnik, P.C.; Stephenson, M.L. Inhibition of Rous-sarcoma virus-replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA?1978, 75, 280–284, doi:10.1073/pnas.75.1.280. 75545
[54]  Summerton, J.; Weller, D. Antisense properties of morpholino oligomers. Nucleosides Nucleotides?1997, 16, 889–898, doi:10.1080/07328319708006105.
[55]  Summerton, J.E. Morpholino, siRNA, and S-DNA compared: Impact of structure and mechanism of action on off-target effects and sequence specificity. Curr. Top. Med. Chem.?2007, 7, 651–660, doi:10.2174/156802607780487740. 17430206
[56]  Moulton, H.M.; Nelson, M.H.; Hatlevig, S.A.; Reddy, M.T.; Iversen, P.L. Cellular uptake of antisense morpholino oligomers conjugated to arginine-rich peptides. Bioconjugate Chem.?2004, 15, 290–299, doi:10.1021/bc034221g.
[57]  Amantana, A.; Moulton, H.M.; Cate, M.L.; Reddy, M.T.; Whitehead, T.; Hassinger, J.N.; Youngblood, D.S.; Iversen, P.L. Pharmacokinetics, biodistribution, stability and toxicity of a cell-penetrating peptide-morpholino oligomer conjugate. Bioconjug. Chem.?2007, 18, 1325–1331. 17583927
[58]  Moulton, J.D.; Jiang, S. Gene Knockdowns in Adult Animals: PPMOs and Vivo-Morpholinos. Molecules?2009, 14, 1304–1323, doi:10.3390/molecules14031304. 19325525
[59]  Neuman, B.W.; Stein, D.A.; Kroeker, A.D.; Paulino, A.D.; Moulton, H.M.; Iversen, P.L.; Buchmeier, M.J. Antisense morpholino-oligomers directed against the 5' end of the genome inhibit coronavirus proliferation and growth. J. Virol.?2004, 78, 5891–5899, doi:10.1128/JVI.78.11.5891-5899.2004. 15140987
[60]  Stein, D.A. Inhibition of RNA Virus Infections with Peptide-Conjugated Morpholino Oligomers. Curr. Pharm. Des.?2008, 14, 2619–2634, doi:10.2174/138161208786071290. 18991679
[61]  Abes, S.; Moulton, H.M.; Clair, P.; Prevot, P.; Youngblood, D.S.; Wu, R.P.; Iversen, P.L.; Lebleu, B. Vectorization of morpholino oligomers by the (R-Ahx-R)(4) peptide allows efficient splicing correction in the absence of endosomolytic agents. J. Control. Release?2006, 116, 304–313, doi:10.1016/j.jconrel.2006.09.011. 17097177
[62]  Abes, R.; Moulton, H.M.; Clair, P.; Yang, S.T.; Abes, S.; Melikov, K.; Prevot, P.; Youngblood, D.S.; Iversen, P.L.; Chernomordik, L.V.; Lebleu, B. Delivery of steric block morpholino oligomers by (R-X-R)(4) peptides: Structure-activity studies. Nucleic Acids Res.?2008, 36, 6343–6354, doi:10.1093/nar/gkn541. 18796528
[63]  Burrer, R.; Neuman, B.W.; Ting, J.P.C.; Stein, D.A.; Moulton, H.M.; Iversen, P.L.; Kuhn, P.; Buchmeier, M.J. Antiviral effects of antisense morpholino oligomers in murine coronavirus infection models. J. Virol.?2007, 81, 5637–5648, doi:10.1128/JVI.02360-06. 17344287
[64]  Swenson, D.L.; Warfield, K.L.; Warren, T.K.; Lovejoy, C.; Hassinger, J.N.; Ruthel, G.; Blouch, R.E.; Moulton, H.M.; Weller, D.D.; Iversen, P.L.; Bavari, S. Chemical modifications of antisense morpholino oligomers enhance their efficacy against Ebola virus infection. Antimicrob. Agents Chemother.?2009, 53, 2089–2099, doi:10.1128/AAC.00936-08. 19223614
[65]  Youngblood, D.S.; Hatlevig, S.A.; Hassinger, J.N.; Iversen, P.L.; Moulton, H.M. Stability of cell-penetrating peptide-morpholino oligomer conjugates in human serum and in cells. Bioconjugate Chem.?2007, 18, 50–60, doi:10.1021/bc060138s.
[66]  Deas, T.S.; Binduga-Gajewska, I.; Tilgner, M.; Ren, P.; Stein, D.A.; Moulton, H.M.; Iversen, P.L.; Kauffman, E.B.; Kramer, L.D.; Shi, P.Y. Inhibition of flavivirus infections by antisense oligorners specifically suppressing viral translation and RNA replication. J. Virol.?2005, 79, 4599–4609, doi:10.1128/JVI.79.8.4599-4609.2005. 15795246
[67]  Deas, T.S.; Bennett, C.J.; Jones, S.A.; Tilgner, M.; Ren, P.; Behr, M.J.; Stein, D.A.; Iversen, P.L.; Kramer, L.D.; Bernard, K.A.; Shi, P.Y. In vitro resistance selection and in vivo efficacy of morpholino oligomers against West Nile virus. Antimicrob. Agents Chemother.?2007, 51, 2470–2482. 17485503
[68]  Kinney, R.; Huang, C.; Rose, B.; Kroeker, A.; Iversen, P.; Stein, D. Inhibition of Dengue virus serotypes 1-4 in cell culture with morpholino oligomers. Antiviral Res.?2005, 65, A87–A87, doi:10.1016/j.antiviral.2004.10.004.
[69]  Holden, K.L.; Stein, D.A.; Pierson, T.C.; Ahmed, A.A.; Clyde, K.; Iversen, P.L.; Harris, E. Inhibition of dengue virus translation and RNA synthesis by a morpholino oligomer targeted to the top of the terminal 3 ' stem-loop structure. Virology?2006, 344, 439–452, doi:10.1016/j.virol.2005.08.034. 16214197
[70]  Stein, D.A.; Huang, C.Y.H.; Silengo, S.; Amantana, A.; Crumley, S.; Blouch, R.E.; Iversen, P.L.; Kinney, R.M. Treatment of AG129 mice with antisense morpholino oligomers increases survival time following challenge with dengue 2 virus. J. Antimicrob. Chemother.?2008, 62, 555–565, doi:10.1093/jac/dkn221. 18567576
[71]  Neuman, B.W.; Stein, D.A.; Kroeker, A.D.; Churchill, M.J.; Kim, A.M.; Kuhn, P.; Dawson, P.; Moulton, H.M.; Bestwick, R.K.; Iversen, P.L.; Buchmeier, M.J. Inhibition, escape, and attenuated growth of severe acute respiratory syndrome coronavirus treated with antisense morpholino oligomers. J. Virol.?2005, 79, 9665–9676. 16014928
[72]  van den Born, E.; Stein, D.A.; Iversen, P.L.; Snijder, E.J. Antiviral activity of morpholino oligomers designed to block various aspects of Equine arteritis virus amplification in cell culture. J. Gen. Virol.?2005, 86, 3081–3090, doi:10.1099/vir.0.81158-0. 16227231
[73]  Zhang, Y.J.; Stein, D.A.; Fan, S.M.; Wang, K.Y.; Kroeker, A.D.; Meng, X.J.; Iversen, P.L.; Matson, D.O. Suppression of porcine reproductive and respiratory syndrome virus replication by morpholino antisense oligomers. Vet. Microbiol.?2006, 117, 117–129, doi:10.1016/j.vetmic.2006.06.006. 16839712
[74]  Vagnozzi, A.; Stein, D.A.; Iversen, P.L.; Rieder, E. Inhibition of foot-and-mouth disease virus infections in cell cultures with antisense morpholino oligorners. J. Virol.?2007, 81, 11669–11680, doi:10.1128/JVI.00557-07. 17728223
[75]  Stone, J.K.; Rijnbrand, R.; Stein, D.A.; Ma, Y.H.; Yang, Y.; Iversen, P.L.; Andino, R. A morpholino oligomer targeting highly conserved internal ribosome entry site sequence is able to inhibit multiple species of picornavirus. Antimicrob. Agents Chemother.?2008, 52, 1970–1981, doi:10.1128/AAC.00011-08. 18347107
[76]  Yuan, J.; Stein, D.A.; Lim, T.; Qiu, D.X.; Coughlin, S.; Liu, Z.; Wang, Y.J.; Blouch, R.; Moulton, H.M.; Iversen, P.L.; Yang, D.C. Inhibition of coxsackievirus B3 in cell cultures and in mice by peptide-conjugated morpholino oligomers targeting the internal ribosome entry site. J. Virol.?2006, 80, 11510–11519, doi:10.1128/JVI.00900-06. 16987987
[77]  Paessler, S.; Rijnbrand, R.; Stein, D.A.; Ni, H.L.; Yun, N.E.; Dziuba, N.; Borisevich, V.; Seregin, A.; Ma, Y.H.; Blouch, R.; Iversen, P.L.; Zacks, M.A. Inhibition of alphavirus infection in cell culture and in mice with antisense morpholino oligomers. Virology?2008, 376, 357–370, doi:10.1016/j.virol.2008.03.032. 18468653
[78]  Enterlein, S.; Warfield, K.L.; Swenson, D.L.; Stein, D.A.; Smith, J.L.; Gamble, C.S.; Kroeker, A.D.; Iversen, P.L.; Bavari, S.; Muhlberger, E. VP35 knockdown inhibits Ebola virus amplification and protects against lethal infection in mice. Antimicrob. Agents Chemother.?2006, 50, 984–993, doi:10.1128/AAC.50.3.984-993.2006. 16495261
[79]  Lai, S.H.; Stein, D.A.; Guerrero-Plata, A.; Liao, S.L.; Ivanciuc, T.; Hong, C.; Iversen, P.L.; Casola, A.; Garofalo, R.P. Inhibition of respiratory syncytial virus infections with morpholino oligomers in cell cultures and in mice. Mol. Ther.?2008, 16, 1120–1128, doi:10.1038/mt.2008.81. 18443602
[80]  Sleeman, K.; Stein, D.A.; Tamin, A.; Reddish, M.; Iversen, P.L.; Rota, P.A. Inhibition of measles virus infections in cell cultures by peptide-conjugated morpholino oligomers. Virus Res.?2009, 140, 49–56, doi:10.1016/j.virusres.2008.10.018. 19059443
[81]  Ge, Q.; Pastey, M.; Kobasa, D.; Puthavathana, P.; Lupfer, C.; Bestwick, R.K.; Iversen, P.L.; Chen, J.; Stein, D.A. Inhibition of multiple subtypes of influenza A virus in cell cultures with morpholino oligomers. Antimicrob. Agents Chemother.?2006, 50, 3724–3733, doi:10.1128/AAC.00644-06. 16966399
[82]  Gabriel, G.; Nordmann, A.; Stein, D.A.; Iversen, P.L.; Klenk, H.D. Morpholino oligomers targeting the PB1 and NP genes enhance the survival of mice infected with highly pathogenic influenza A H7N7 virus. J. Gen. Virol.?2008, 89, 939–948, doi:10.1099/vir.0.83449-0. 18343835
[83]  Lupfer, C.; Stein, D.A.; Mourich, D.V.; Tepper, S.E.; Iversen, P.L.; Pastey, M. Inhibition of influenza A H3N8 virus infections in mice by morpholino oligomers. Arch. Virol.?2008, 153, 929–937, doi:10.1007/s00705-008-0067-0. 18369525
[84]  Zhang, Y.J.; Wang, K.Y.; Stein, D.A.; Patel, D.; Watkins, R.; Moulton, H.M.; Iversen, P.L.; Matson, D.O. Inhibition of replication and transcription activator and latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus by morpholino oligomers. Antiviral Res.?2007, 73, 12–23, doi:10.1016/j.antiviral.2006.05.017. 16842866
[85]  Zhang, Y.J.; Bonaparte, R.S.; Patel, D.; Stein, D.A.; Iversen, P.L. Blockade of viral interleukin-6 expression of Kaposi's sarcoma-associated herpesvirus. Mol. Cancer Ther.?2008, 7, 712–720, doi:10.1158/1535-7163.MCT-07-2036. 18347156
[86]  Moerdyk-Schauwecker, M.; Stein, D.A.; Eide, K.; Blouch, R.E.; Bildfell, R.; Iversen, P.; Jin, L. Inhibition of HSV-1 ocular infection with morpholino oligomers targeting ICP0 and ICP27. Antiviral Res.?2009, 84, 131–141, doi:10.1016/j.antiviral.2009.07.020. 19665486
[87]  Nelson, M.H.; Stein, D.A.; Kroeker, A.D.; Hatlevig, S.A.; Iversen, P.L.; Moulton, H.M. Arginine-rich peptide conjugation to morpholino oligomers: Effects on antisense activity and specificity. Bioconjug. Chem.?2005, 16, 959–966, doi:10.1021/bc0501045. 16029037
[88]  Warfield, K.L.; Swenson, D.L.; Olinger, G.G.; Nichols, D.K.; Pratt, W.D.; Blouch, R.; Stein, D.A.; Aman, M.J.; Iversen, P.L.; Bavari, S. Gene-specific countermeasures against Ebola virus based on antisense phosphorodiamidate morpholino oligomers. PLoS Pathog.?2006, 2, 5–13, doi:10.1371/journal.ppat.0020001.
[89]  Smith, A.W.; Iversen, P.L.; O'Hanley, P.D.; Skilling, D.E.; Christensen, J.R.; Weaver, S.S.; Longley, K.; Stone, M.A.; Poet, S.E.; Matson, D.O. Virus-specific antiviral treatment for controlling severe and fatal outbreaks of feline calicivirus infection. Am. J. Vet. Res.?2008, 69, 23–32, doi:10.2460/ajvr.69.1.23. 18167083
[90]  Buchardt, O.; Egholm, M.; Berg, R.H.; Nielsen, P.E. Peptide Nucleic-Acids and Their Potential Applications in Biotechnology. Trends Biotechnol.?1993, 11, 384–386, doi:10.1016/0167-7799(93)90097-S. 7691090
[91]  Kaushik, N.; Basu, A.; Palumbo, P.; Myers, R.L.; Pandey, V.N. Anti-TAR polyamide nucleotide analog conjugated with a membrane-permeating peptide inhibits human immunodeficiency virus type 1 production. J. Virol.?2002, 76, 3881–3891, doi:10.1128/JVI.76.8.3881-3891.2002. 11907228
[92]  Chaubey, B.; Tripathi, S.; Ganguly, S.; Harris, D.; Casale, R.A.; Pandey, V.N. A PNA-transportan conjugate targeted to the TAR region of the HIV-1 genome exhibits both antiviral and virucidal properties. Virology?2005, 331, 418–428, doi:10.1016/j.virol.2004.10.032. 15629784
[93]  Tripathi, S.; Chaubey, B.; Ganguly, S.; Harris, D.; Casale, R.A.; Pandey, V.N. Anti-HIV-1 activity of anti-TAR polyamide nucleic acid coniugated with various membrane transducing peptides. Nucleic Acids Res.?2005, 33, 4345–4356, doi:10.1093/nar/gki743. 16077030
[94]  Tripathi, S.; Chaubey, B.; Barton, B.E.; Pandey, V.N. Anti HIV-1 virucidal activity of polyamide nucleic acid-membrane transducing peptide conjugates targeted to primer binding site of HIV-1 genome. Virology?2007, 363, 91–103, doi:10.1016/j.virol.2007.01.016. 17320140
[95]  Turner, J.J.; Ivanova, G.D.; Verbeure, B.; Williams, D.; Arzumanov, A.A.; Abes, S.; Lebleu, B.; Gait, M.J. Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells. Nucleic Acids Res.?2005, 33, 6837–6849, doi:10.1093/nar/gki991. 16321967
[96]  Yoo, J.S.; Kim, C.M.; Kim, J.H.; Kim, J.Y.; Oh, J.W. Inhibition of Japanese encephalitis virus replication by peptide nucleic acids targeting cis-acting elements on the plus- and minus-strands of viral RNA. Antiviral Res.?2009, 82, 122–133, doi:10.1016/j.antiviral.2009.02.187. 19428603
[97]  Uchil, P.D.; Satchidanandam, V. Architecture of the flaviviral replication complex - Protease, nuclease, and detergents reveal encasement within double-layered membrane compartments. J. Biol. Chem.?2003, 278, 24388–24398, doi:10.1074/jbc.M301717200. 12700232
[98]  Lebleu, B.; Moulton, H.M.; Abes, R.; Ivanova, G.D.; Abes, S.; Stein, D.A.; Iversen, P.L.; Arzumanov, A.A.; Gait, M.J. Cell penetrating peptide conjugates of steric block oligonucleotides. Adv. Drug Delivery Rev.?2008, 60, 517–529, doi:10.1016/j.addr.2007.09.002.
[99]  Chaubey, B.; Tripathi, S.; Pandey, V.N. Single acute-dose and repeat-doses toxicity of anti-HIV-1 PNA(TAR)-penetratin conjugate after intraperitoneal administration to mice. Oligonucleotides?2008, 18, 9–20, doi:10.1089/oli.2007.0088. 18321159
[100]  Upadhyay, A.; Ponzio, N.M.; Pandey, V.N. Immunological Response to Peptide Nucleic Acid and its Peptide Conjugate Targeted to Transactivation Response (TAR) Region of HIV-1 RNA Genome. Oligonucleotides?2008, 18, 329–335, doi:10.1089/oli.2008.0152. 19006449
[101]  Ganguly, S.; Chaubey, B.; Tripathi, S.; Upadhyay, A.; Neti, P.; Howell, R.W.; Pandey, V.N. Pharmacokinetic analysis of polyamide nucleic-acid-cell penetrating peptide conjugates targeted against HIV-1 transactivation response element. Oligonucleotides?2008, 18, 277–286, doi:10.1089/oli.2008.0140. 18729823
[102]  Meng, S.; Wei, B.J.; Xu, R.H.; Zhang, K.; Wang, L.N.; Zhang, R.; Li, J.M. TAT Peptides Mediated Small Interfering RNA Delivery to Huh-7 Cells and Efficiently Inhibited Hepatitis C Virus RNA Replication. Intervirology?2009, 52, 135–140, doi:10.1159/000220597. 19478527
[103]  Vocero-Akbani, A.M.; Vander Heyden, N.; Lissy, N.A.; Ratner, L.; Dowdy, S.F. Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein. Nat. Med.?1999, 5, 29–33, doi:10.1038/4710. 9883836
[104]  Darbinian, N.; Popov, Y.; Khaliji, K.; Amini, S. Creation of a bi-directional protein transduction system for suppression of HIV-1 expression by p27SJ. Antiviral Res.?2008, 79, 136–141, doi:10.1016/j.antiviral.2007.11.006. 18378326
[105]  Roisin, A.; Robin, J.P.; Dereuddre-Bosquet, N.; Vitte, A.L.; Dormont, D.; Clayette, P.; Jalinot, P. Inhibition of HIV-1 replication by cell-penetrating peptides binding Rev. J. Biol. Chem.?2004, 279, 9208–9214, doi:10.1074/jbc.M311594200. 14668323
[106]  Mino, T.; Mori, T.; Aoyama, Y.; Sera, T. Cell-permeable artificial zinc-finger proteins as potent antiviral drugs for human papillomaviruses. Arch. Virol.?2008, 153, 1291–1298, doi:10.1007/s00705-008-0125-7. 18521532
[107]  Bultmann, H.; Busse, J.S.; Brandt, C.R. Modified FGF4 signal peptide inhibits entry of herpes simplex virus type 1. J. Virol.?2001, 75, 2634–2645, doi:10.1128/JVI.75.6.2634-2645.2001. 11222686
[108]  Bultmann, H.; Brandt, C.R. Peptides containing membrane-transiting motifs inhibit virus entry. J. Biol. Chem.?2002, 277, 36018–36023, doi:10.1074/jbc.M204849200. 12130644
[109]  Bultmann, H.; Teuton, J.; Brandt, C.R. Addition of a C-terminal cysteine improves the anti-herpes simplex virus activity of a peptide containing the human immunodeficiency virus type 1 TAT protein transduction domain. Antimicrob. Agents Chemother.?2007, 51, 1596–1607, doi:10.1128/AAC.01009-06. 17261627
[110]  Klotman, M.E.; Chang, T.L. Defensins in innate antiviral immunity. Nat. Rev. Immunol.?2006, 6, 447–456, doi:10.1038/nri1860. 16724099
[111]  Krajewski, K.; Marchand, C.; Long, Y.Q.; Pommier, Y.; Roller, P.P. Synthesis and HIV-1 integrase inhibitory activity of dimeric and tetrameric analogs of indolicidin. Bioorg. Med. Chem. Lett.?2004, 14, 5595–5598, doi:10.1016/j.bmcl.2004.08.061. 15482931

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133