全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of Functional Protein Transduction Domains Using the NEMO Binding Domain Peptide

DOI: 10.3390/ph3010110

Keywords: protein transduction domains, NEMO-binding domain, NF-kB, delayed type hypesenDTH, arthritis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Protein transduction domains (PTDs), both naturally occurring and synthetic, have been extensively utilized for intracellular delivery of biologically active molecules both in vitro and in vivo. However, most comparisons of transduction efficiency have been performed using fluorescent markers. To compare efficiency of functional protein transduction, a peptide derived from IkB kinase ? (IKK?) that prevents formation of an active IKK complex was used as a biologically active cargo. This peptide, termed NEMO Binding Domain (NBD), is able to block activation of the transcriptional factor NF-κB by IKK, but not basal NF-κB activity. Our results demonstrate that Antp and Tat PTDs were most effective for delivery of NBD for inhibition of NF-kB activation compared to other PTD-NBD in both Hela and 293 cells, however, at higher concentrations (100 μM), the Antp-NBD as well as the FGF-NBD peptide caused significant cellular toxicity. In contrast to the cell culture results, delivery of NBD using 8K (octalysine) and 6R (six arginine) were the most effect in blocking inflammation following local, footpad delivery in a KLH-induced DTH murine model of inflammatory arthritis. These results demonstrate differences between PTDs for delivery of a functional cargo between cell types.

References

[1]  Eguchi, A.; Akuta, T.; Okuyama, H.; Senda, T.; Yokoi, H.; Inokuchi, H.; Fujita, S.; Hayakawa, T.; Takeda, K.; Hasegawa, M.; Nakanishi, M. Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J. Biol. Chem.?2001, 276, 26204–26210, doi:10.1074/jbc.M010625200. 11346640
[2]  Josephson, L.; Tung, C.H.; Moore, A.; Weissleder, R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug. Chem.?1999, 10, 186–191, doi:10.1021/bc980125h. 10077466
[3]  Lewin, M.; Carlesso, N.; Tung, C.H.; Tang, X.W.; Cory, D.; Scadden, D.T.; Weissleder, R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol.?2000, 18, 410–414, doi:10.1038/74464. 10748521
[4]  Rothbard, J.B.; Garlington, S.; Lin, Q.; Kirschberg, T.; Kreider, E.; McGrane, P.L.; Wender, P.A.; Khavari, P.A. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat. Med.?2000, 6, 1253–1257, doi:10.1038/81359.
[5]  Torchilin, V.P.; Rammohan, R.; Weissig, V.; Levchenko, T.S. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. USA?2001, 98, 8786–8791, doi:10.1073/pnas.151247498.
[6]  Wadia, J.S.; Dowdy, S.F. Protein transduction technology. Curr. Opin. Biotechnol.?2002, 13, 52–56, doi:10.1016/S0958-1669(02)00284-7. 11849958
[7]  Mai, J.C.; Mi, Z.; Kim, S.H.; Ng, B.; Robbins, P.D. A proapoptotic peptide for the treatment of solid tumors. Cancer Res.?2001, 61, 7709–7712. 11691780
[8]  May, M.J.; D'Acquisto, F.; Madge, L.A.; Glockner, J.; Pober, J.S.; Ghosh, S. Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science?2000, 289, 1550–1554, doi:10.1126/science.289.5484.1550. 10968790
[9]  Schwarze, S.R.; Ho, A.; Vocero-Akbani, A.; Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science?1999, 285, 1569–1572, doi:10.1126/science.285.5433.1569. 10477521
[10]  Zhou, J.P.; Feng, Z.G.; Yuan, B.L.; Yu, S.Z.; Li, Q.; Qu, H.Y.; Sun, M.J. Transduced PTD-BDNF fusion protein protects against beta amyloid peptide-induced learning and memory deficits in mice. Brain Res.?2008, 1191, 12–19, doi:10.1016/j.brainres.2007.10.097. 18191117
[11]  Cao, G.; Pei, W.; Ge, H.; Liang, Q.; Luo, Y.; Sharp, F.R.; Lu, A.; Ran, R.; Graham, S.H.; Chen, J. In Vivo Delivery of a Bcl-xL Fusion Protein Containing the TAT Protein Transduction Domain Protects against Ischemic Brain Injury and Neuronal Apoptosis. J. Neurosci.?2002, 22, 5423–5431. 12097494
[12]  Mai, J.C.; Shen, H.; Watkins, S.C.; Cheng, T.; Robbins, P.D. Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J. Biol. Chem.?2002, 277, 30208–30218, doi:10.1074/jbc.M204202200. 12034749
[13]  Benito, M.J.; Murphy, E.; Murphy, E.P.; van den Berg, W.B.; FitzGerald, O.; Bresnihan, B. Increased synovial tissue NF-kappa B1 expression at sites adjacent to the cartilage-pannus junction in rheumatoid arthritis. Arthritis Rheum.?2004, 50, 1781–1787, doi:10.1002/art.20260. 15188354
[14]  Handel, M.L.; McMorrow, L.B.; Gravallese, E.M. Nuclear factor-kappa B in rheumatoid synovium. Localization of p50 and p65. Arthritis Rheum.?1995, 38, 1762–1770, doi:10.1002/art.1780381209. 8849348
[15]  Jun, H.S.; Yoon, C.S.; Zbytnuik, L.; van Rooijen, N.; Yoon, J.W. The role of macrophages in T cell-mediated autoimmune diabetes in nonobese diabetic mice. J. Exp. Med.?1999, 189, 347–358, doi:10.1084/jem.189.2.347. 9892617
[16]  Oyama, T.; Ran, S.; Ishida, T.; Nadaf, S.; Kerr, L.; Carbone, D.P.; Gabrilovich, D.I. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J. Immunol.?1998, 160, 1224–1232. 9570538
[17]  Poligone, B.; Weaver Jr., D.J.; Sen, P.; Baldwin Jr., A.S.; Tisch, R. Elevated NF-kappaB activation in nonobese diabetic mouse dendritic cells results in enhanced APC function. J. Immunol.?2002, 168, 188–196. 11751962
[18]  Weaver Jr., D.J.; Poligone, B.; Bui, T.; Abdel-Motal, U.M.; Baldwin Jr., A.S.,; Tisch, R. Dendritic cells from nonobese diabetic mice exhibit a defect in NF-kappa B regulation due to a hyperactive I kappa B kinase. J. Immunol.?2001, 167, 1461–1468. 11466366
[19]  Wheat, W.; Kupfer, R.; Gutches, D.G.; Rayat, G.R.; Beilke, J.; Scheinman, R.I.; Wegmann, D.R. Increased NF-kappa B activity in B cells and bone marrow-derived dendritic cells from NOD mice. Eur. J. Immunol.?2004, 34, 1395–1404, doi:10.1002/eji.200324490. 15114673
[20]  DiDonato, J.A.; Hayakawa, M.; Rothwarf, D.M.; Zandi, E.; Karin, M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature?1997, 388, 548–554, doi:10.1038/41493. 9252186
[21]  Rehman, K.K.; Bertera, S.; Bottino, R.; Balamurugan, A.N.; Mai, J.C.; Mi, Z.; Trucco, M.; Robbins, P.D. Protection of islets by in situ peptide-mediated transduction of the Ikappa B kinase inhibitor Nemo-binding domain peptide. J. Biol. Chem.?2003, 278, 9862–9868, doi:10.1074/jbc.M207700200. 12524423
[22]  Giannoukakis, N.; Rudert, W.A.; Trucco, M.; Robbins, P.D. Protection of human islets from the effects of interleukin-1beta by adenoviral gene transfer of an Ikappa B repressor. J. Biol. Chem.?2000, 275, 36509–36513, doi:10.1074/jbc.M005943200. 10967112
[23]  Zandi, E.; Chen, Y.; Karin, M. Direct phosphorylation of IkappaB by IKKalpha and IKKbeta: discrimination between free and NF-kappaB-bound substrate. Science?1998, 281, 1360–1363, doi:10.1126/science.281.5381.1360. 9721103
[24]  Sugita, T.; Yoshikawa, T.; Mukai, Y.; Yamanada, N.; Imai, S.; Nagano, K.; Yoshida, Y.; Shibata, H.; Yoshioka, Y.; Nakagawa, S.; Kamada, H.; Tsunoda, S.I.; Tsutsumi, Y. Comparative study on transduction and toxicity of protein transduction domains. Br. J. Pharmacol.?2008, 153, 1143–1152, doi:10.1038/sj.bjp.0707678. 18223668
[25]  Jimi, E.; Aoki, K.; Saito, H.; D'Acquisto, F.; May, M.J.; Nakamura, I.; Sudo, T.; Kojima, T.; Okamoto, F.; Fukushima, H.; Okabe, K.; Ohya, K.; Ghosh, S. Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat. Med.?2004, 10, 617–624, doi:10.1038/nm1054. 15156202
[26]  Tas, S.W.; Vervoordeldonk, M.J.; Hajji, N.; May, M.J.; Ghosh, S.; Tak, P.P. Local treatment with the selective IkappaB kinase beta inhibitor NEMO-binding domain peptide ameliorates synovial inflammation. Arthritis Res. Ther.?2006, 8, R86, doi:10.1186/ar1958. 16684367
[27]  di Meglio, P.; Ianaro, A.; Ghosh, S. Amelioration of acute inflammation by systemic administration of a cell-permeable peptide inhibitor of NF-kappaB activation. Arthritis Rheum.?2005, 52, 951–958, doi:10.1002/art.20960. 15751079
[28]  Dave, S.H.; Tilstra, J.S.; Matsuoka, K.; Li, F.; Karrasch, T.; Uno, J.K.; Sepulveda, A.R.; Jobin, C.; Baldwin Jr., A.S.; Robbins, P.D.; Plevy, S.E. Amelioration of chronic murine colitis by peptide-mediated transduction of the IkappaB kinase inhibitor NEMO binding domain peptide. J. Immunol.?2007, 179, 7852–7859. 18025231
[29]  Acharyya, S.; Villalta, S.A.; Bakkar, N.; Bupha-Intr, T.; Janssen, P.M.; Carathers, M.; Li, Z.W.; Beg, A.A.; Ghosh, S.; Sahenk, Z.; Weinstein, M.; Gardner, K.L.; Rafael-Fortney, J.A.; Karin, M.; Tidball, J.G.; Baldwin, A.S.; Guttridge, D.C. Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J. Clin. Invest.?2007, 117, 889–901, doi:10.1172/JCI30556. 17380205
[30]  Bianco, N.R.; Kim, S.H.; Ruffner, M.A.; Robbins, P.D. Therapeutic effect of exosomes from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis Rheum.?2009, 60, 380–389, doi:10.1002/art.24229. 19180475

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133