Comparative Effects of R- and S-equol and Implication of Transactivation Functions (AF-1 and AF-2) in Estrogen Receptor-Induced Transcriptional Activity
Equol, one of the main metabolites of daidzein, is a chiral compound with pleiotropic effects on cellular signaling. This property may induce activation/inhibition of the estrogen receptors (ER) a or b, and therefore, explain the beneficial/deleterious effects of equol on estrogen-dependent diseases. With its asymmetric centre at position C-3, equol can exist in two enantiomeric forms ( R- and S-equol). To elucidate the yet unclear mechanisms of ER activation/inhibition by equol, we performed a comprehensive analysis of ERa and ERb transactivation by racemic equol, as well as by enantiomerically pure forms. Racemic equol was prepared by catalytic hydrogenation from daidzein and separated into enantiomers by chiral HPLC. The configuration assignment was performed by optical rotatory power measurements. The ER-induced transactivation by R- and S-equol (0.1–10 μM) and 17b-estradiol (E2, 10 nM) was studied using transient transfections of ERa and ERb in CHO, HepG2 and HeLa cell lines. R- and S-equol induce ER transactivation in an opposite fashion according to the cellular context. R-equol and S-equol are more potent in inducing ERa in an AF-2 and AF-1 permissive cell line, respectively. Involvement of ERa transactivation functions (AF-1 and AF-2) in these effects has been examined. Both AF-1 and AF-2 are involved in racemic equol, R-equol and S-equol induced ERa transcriptional activity. These results could be of interest to find a specific ligand modulating ER transactivation and could contribute to explaining the diversity of equol actions in vivo.
References
[1]
Mortensen, A.; Kulling, S.E.; Schwartz, H.; Rowland, I.; Ruefer, C.E.; Rimbach, G.; Cassidy, A.; Magee, P.; Millar, J.; Hall, W.L.; Kramer Birkved, F.; Sorensen, I.K.; Sontag, G. Analytical and compositional aspects of isoflavones in food and their biological effects. Mol. Nutr. Food Res.?2009, 53, S266–S309, doi:10.1002/mnfr.200800478. 19774555
[2]
Ishimi, Y. Soybean isoflavones in bone health. Forum Nutr.?2009, 61, 104–116. 19367115
[3]
Steiner, C.; Arnould, S.; Scalbert, A.; Manach, C. Isoflavones and the prevention of breast and prostate cancer: new perspectives opened by nutrigenomics. Br. J. Nutr.?2008, 99, ES78–ES108. 18503737
[4]
Bennetau-Pelissero, C.; Arnal-Schnebelen, B.; Lamothe, V.; Sauvant, P.; Sagne, J.L.; Verbruggen, M.A.; Mathey, J.; Lavialle, O. ELISA as a new method to measure genistein and daidzein in food and human fluids. Food Chem.?2003, 82, 645–658, doi:10.1016/S0308-8146(03)00121-3.
[5]
Axelson, M.; Kirk, D.N.; Farrant, R.D.; Cooley, G.; Lawson, A.M.; Setchell, K.D.R. The identification of the weak estrogen equol [7-hydroxy-3-(4’-hydroxyphenyl)-chroman] in human urine. Biochem. J.?1982, 201, 353–357. 7082293
[6]
Setchell, K.D.; Borriello, S.P.; Hulme, P.; Kirk, D.N.; Axelson, M. Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am. J. Clin. Nutr.?1984, 40, 569–578. 6383008
[7]
Atkinson, C.; Frankenfeld, C.L.; Lampe, J.W. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp. Biol. Med. (Maywood)?2005, 230, 155–170. 15734719
[8]
Yuan, J.P.; Wang, J.H.; Liu, X. Metabolism of dietary soy isoflavones to equol by human intestinal microflora--implications for health. Mol. Nutr. Food Res.?2007, 51, 765–781, doi:10.1002/mnfr.200600262. 17579894
[9]
Verbit, L.; Clark-Lewis, J.W. Optically active aromatic chromophores--VIII: Studies in the isoflavonoid and rotenoid series. Tetrahedron?1968, 24, 5519–5527, doi:10.1016/0040-4020(68)88150-5.
[10]
Setchell, K.D.R.; Clerici, C.; Lephart, E.D.; Cole, S.J.; Heenan, C.; Castellani, D.; Wolfe, B.E.; Nechemias-Zimmer, L.; Brown, N.M.; Lund, T.D.; Handa, R.J.; Heubi, J.E. S-equol, a potent ligand for estrogen receptor beta , is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am. J. Clin. Nutr.?2005, 81, 1072–1079. 15883431
[11]
Lamberton, J.A.; Suares, H.; Watson, K.G. Catalytic hydrogenation of isoflavones. The preparation of (+)-equol and related isoflavans. Aust. J. Chem.?1978, 31, 455–457, doi:10.1071/CH9780455.
[12]
Wessely, F.; Prillinger, F. Constitution of equol. Ber. Dtsch. Chem. Ges. B?1939, 72B, 629–633.
[13]
Muthyala, R.S.; Ju, Y.H.; Sheng, S.; Williams, L.D.; Doerge, D.R.; Katzenellenbogen, B.S.; Helferich, W.G.; Katzenellenbogen, J.A. Equol, a natural estrogenic metabolite from soy isoflavones: convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg. Med. Chem.?2004, 12, 1559–1567, doi:10.1016/j.bmc.2003.11.035. 15018930
[14]
Li, S.-R.; Chen, P.-Y.; Chen, L.-Y.; Lo, Y.-F.; Tsai, I.-L.; Wang, E.-C. Synthesis of haginin E, equol, daidzein, and formononetin from resorcinol via an isoflavene intermediate. Tetrahedron Lett.?2009, 50, 2121–2123, doi:10.1016/j.tetlet.2009.02.159.
[15]
Gharpure, S.J.; Sathiyanarayanan, A.M.; Jonnalagadda, P. o-Quinone methide based approach to isoflavans: application to the total syntheses of equol, 3'-hydroxyequol and vestitol. Tetrahedron Lett.?2008, 49, 2974–2978, doi:10.1016/j.tetlet.2008.03.003.
[16]
Wang, X.-L.; Hur, H.-G.; Lee, J.H.; Kim, K.T.; Kim, S.-I. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl. Environ. Microbiol.?2005, 71, 214–219, doi:10.1128/AEM.71.1.214-219.2005. 15640190
[17]
Setchell, K.D.R.; Cole, S.J. Compositions and products containing S-equol, and methods for their making. U.S. Pat. Appl. Publ. 20040235758, 2004.
[18]
Heemstra, J.M.; Kerrigan, S.A.; Doerge, D.R.; Helferich, W.G.; Boulanger, W.A. Total Synthesis of (S)-Equol. Org. Lett.?2006, 8, 5441–5443, doi:10.1021/ol0620444. 17107042
[19]
Takashima, Y.; Kaneko, Y.; Kobayashi, Y. Synthetic access to optically active isoflavans by using allylic substitution. Tetrahedron?2010, 66, 197–207, doi:10.1016/j.tet.2009.10.116.
[20]
Setchell, K.D.R.; Sorokin, V.D. Method for enantioselective hydrogenation of chromenes. U.S. Pat. Appl. Publ 20070027329, 2007.
[21]
Setchell, K.D.R.; Cole, S.J. Compositions and products containing R-equol, and methods for their making. U.S. Pat. Appl. Publ. 20040147594, 2004.
[22]
Magee, P.J.; Raschke, M.; Steiner, C.; Duffin, J.G.; Pool-Zobel, B.L.; Jokela, T.; Wahala, K.; Rowland, I.R. Equol: a comparison of the effects of the racemic compound with that of the purified S-enantiomer on the growth, invasion, and DNA integrity of breast and prostate cells in vitro. Nutr. Cancer?2006, 54, 232–242, doi:10.1207/s15327914nc5402_10. 16898868
[23]
Kuiper, G.G.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der, B.B.; Gustafsson, J.A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology?1998, 139, 4252–4263, doi:10.1210/en.139.10.4252. 9751507
[24]
Metivier, R.; Penot, G.; Flouriot, G.; Pakdel, F. Synergism between ERalpha transactivation function 1 (AF-1) and AF-2 mediated by steroid receptor coactivator protein-1: requirement for the AF-1 alpha-helical core and for a direct interaction between the N- and C-terminal domains. Mol. Endocrinol.?2001, 15, 1953–1970, doi:10.1210/me.15.11.1953. 11682626
[25]
Pelissero, C.; Bennetau, B.; Babin, P.; Le Menn, F.; Dunogues, J. The estrogenic activity of certain phytoestrogens in the Siberian sturgeon Acipenser baeri. J. Steroid Biochem. Mol. Biol.?1991, 38, 293–299, doi:10.1016/0960-0760(91)90100-J. 2009221
[26]
Zhang, T.; Kientzy, C.; Franco, P.; Ohnishi, A.; Kagamihara, Y.; Kurosawa, H. Solvent versatility of immobilized 3,5-dimethylphenylcarbamate of amylose in enantiomeric separations by HPLC. J. Chromatogr. A?2005, 1075, 65–75, doi:10.1016/j.chroma.2005.03.116. 15974119
[27]
Mathey, J.; Lamothe, V.; Coxam, V.; Potier, M.; Sauvant, P.; Pelissero, C.B. Concentrations of isoflavones in plasma and urine of post-menopausal women chronically ingesting high quantities of soy isoflavones. J. Pharm. Biomed. Anal.?2006, 41, 957–965, doi:10.1016/j.jpba.2006.01.051. 16513315
[28]
Vergne, S.; Titier, K.; Bernard, V.; Asselineau, J.; Durand, M.; Lamothe, V.; Potier, M.; Perez, P.; Demotes-Mainard, J.; Chantre, P.; Moore, N.; Bennetau-Pelissero, C.; Sauvant, P. Bioavailability and urinary excretion of isoflavones in humans: effects of soy-based supplements formulation and equol production. J. Pharm. Biomed. Anal.?2007, 43, 1488–1494, doi:10.1016/j.jpba.2006.10.006. 17110073
[29]
Setchell, K.D.; Zhao, X.; Jha, P.; Heubi, J.E.; Brown, N.M. The pharmacokinetic behavior of the soy isoflavone metabolite S-(-)equol and its diastereoisomer R-(+)equol in healthy adults determined by using stable-isotope-labeled tracers. Am. J. Clin. Nutr.?2009, 90, 1029–1037, doi:10.3945/ajcn.2009.27981. 19710188
[30]
Carreau, C.; Flouriot, G.; Bennetau-Pelissero, C.; Potier, M. Respective contribution exerted by AF-1 and AF-2 transactivation functions in estrogen receptor alpha induced transcriptional activity by isoflavones and equol: consequence on breast cancer cell proliferation. Mol. Nutr. Food Res.?2009, 53, 652–658, doi:10.1002/mnfr.200800061. 19065587
[31]
Mueller, S.O.; Simon, S.; Chae, K.; Metzler, M.; Korach, K.S. Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor alpha (ERalpha) and ERbeta in human cells. Toxicol. Sci.?2004, 80, 14–25, doi:10.1093/toxsci/kfh147. 15084758
[32]
Morito, K.; Hirose, T.; Kinjo, J.; Hirakawa, T.; Okawa, M.; Nohara, T.; Ogawa, S.; Inoue, S.; Muramatsu, M.; Masamune et, a. Interaction of phytoestrogens with estrogen receptors alpha and beta. Biol. Pharm. Bull.?2001, 24, 351–356, doi:10.1248/bpb.24.351. 11305594
[33]
Kostelac, D.; Rechkemmer, G.; Briviba, K. Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J. Agric. Food Chem.?2003, 51, 7632–7635, doi:10.1021/jf034427b. 14664520
[34]
Berry, M.; Metzger, D.; Chambon, P. Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J.?1990, 9, 2811–2818. 2118104
[35]
Fujita, T.; Kobayashi, Y.; Wada, O.; Tateishi, Y.; Kitada, L.; Yamamoto, Y.; Takashima, H.; Murayama, A.; Yano, T.; Baba, T.; Kato, S.; Kawabe, Y.; Yanagisawa, J. Full activation of estrogen receptor alpha activation function-1 induces proliferation of breast cancer cells. J. Biol. Chem.?2003, 278, 26704–26714, doi:10.1074/jbc.M301031200. 12738788
[36]
Gougelet, A.; Mueller, S.O.; Korach, K.S.; Renoir, J.M. Oestrogen receptors pathways to oestrogen responsive elements: the transactivation function-1 acts as the keystone of oestrogen receptor (ER) beta-mediated transcriptional repression of ERalpha. J. Steroid Biochem. Mol. Biol.?2007, 104, 110–122, doi:10.1016/j.jsbmb.2007.03.002. 17478088
[37]
Tzukerman, M.T.; Esty, A.; Santiso-Mere, D.; Danielian, P.; Parker, M.G.; Stein, R.B.; Pike, J.W.; McDonnell, D.P. Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol. Endocrinol.?1994, 8, 21–30, doi:10.1210/me.8.1.21. 8152428
[38]
Wu, F.; Safe, S. Differential activation of wild-type estrogen receptor alpha and C-terminal deletion mutants by estrogens, antiestrogens and xenoestrogens in breast cancer cells. J. Steroid Biochem. Mol. Biol.?2007, 103, 1–9, doi:10.1016/j.jsbmb.2006.07.007. 17141713
[39]
Yoon, K.; Pallaroni, L.; Stoner, M.; Gaido, K.; Safe, S. Differential activation of wild-type and variant forms of estrogen receptor alpha by synthetic and natural estrogenic compounds using a promoter containing three estrogen-responsive elements. J. Steroid Biochem. Mol. Biol.?2001, 78, 25–32, doi:10.1016/S0960-0760(01)00070-X. 11530281
[40]
Huet, G.; Merot, Y.; Le Dily, F.; Kern, L.; Ferriere, F.; Saligaut, C.; Boujrad, N.; Pakdel, F.; Metivier, R.; Flouriot, G. Loss of E-cadherin-mediated cell contacts reduces estrogen receptor alpha (ER alpha) transcriptional efficiency by affecting the respective contribution exerted by AF1 and AF2 transactivation functions. Biochem. Biophys. Res. Commun.?2008, 365, 304–309, doi:10.1016/j.bbrc.2007.10.178. 17991426
[41]
Merot, Y.; Metivier, R.; Penot, G.; Manu, D.; Saligaut, C.; Gannon, F.; Pakdel, F.; Kah, O.; Flouriot, G. The relative contribution exerted by AF-1 and AF-2 transactivation functions in estrogen receptor alpha transcriptional activity depends upon the differentiation stage of the cell. J. Biol. Chem.?2004, 279, 26184–26191, doi:10.1074/jbc.M402148200. 15078875
[42]
Carreau, C.; Flouriot, G.; Bennetau-Pelissero, C.; Potier, M. Enterodiol and enterolactone, two major diet-derived polyphenol metabolites have different impact on ERalpha transcriptional activation in human breast cancer cells. J. Steroid Biochem. Mol. Biol.?2008, 110, 176–185, doi:10.1016/j.jsbmb.2008.03.032. 18457947
[43]
Lampe, J.W. Is equol the key to the efficacy of soy foods? Am. J. Clin. Nutr.?2009, 89, 1664–1667, doi:10.3945/ajcn.2009.26736T. 19357217
[44]
Brown, N.M.; Belles, C.A.; Lindley, S.L.; Zimmer-Nechemias, L.; Zhao, X.; Witte, D.P.; Kim, M.O.; Setchell, K.D. The Chemopreventive Action of Equol Enantiomers in A Chemically-Induced Animal Model of Breast Cancer. Carcinogenesis?, 2010, doi:10.1093/carcin/bgq1025.
[45]
Ishiwata, N.; Melby, M.K.; Mizuno, S.; Watanabe, S. New equol supplement for relieving menopausal symptoms: randomized, placebo-controlled trial of Japanese women. Menopause?2009, 16, 141–148, doi:10.1097/gme.0b013e31818379fa. 19131846