全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2012 

Spontaneous Deposition of Prussian Blue on Multi-Walled Carbon Nanotubes and the Application in an Amperometric Biosensor

DOI: 10.3390/nano2040428

Keywords: Prussian blue, spontaneous deposition, carbon nanotubes, glucose determination

Full-Text   Cite this paper   Add to My Lib

Abstract:

A simple method has been developed for the spontaneous deposition of Prussian blue (PB) particles from a solution containing only ferricyanide ions onto conducting substrates such as indium tin oxide glass, glassy carbon disk and carbon nanotube (CNT) materials. Formation of PB deposits was confirmed by ultraviolet-visible absorption spectrometry and electrochemical techniques. The surface morphology of the PB particles deposited on the substrates was examined by atomic force microscopy and scanning electron microscopy. CNT/PB composite modified glassy carbon electrodes exhibited an electrocatalytic property for hydrogen peroxide reduction. These modified electrodes exhibited a high sensitivity for electrocatalytic reduction of hydrogen peroxide at ?0.05 V ( vs. Ag|AgCl), probably due to the synergistic effect of CNT with PB. Then, CNT/PB modified electrodes were further developed as amperometric glucose biosensors. These biosensors offered a linear response to glucose concentration from 0.1 to 0.9 mM with good selectivity, high sensitivity of 0.102 A M ? 1 cm ?2 and short response time (within 2 s) at a negative operation potential of ?0.05 V ( vs. Ag|AgCl). The detection limit was estimated to be 0.01 mM at a signal-to-noise ratio of 3.

References

[1]  Yang, R.; Qian, Z.; Deng, J. Electrochemical deposition of Prussian blue from a single ferricyanide solution. J. Electrochem. Soc. 1998, 145, 2231–2236, doi:10.1149/1.1838625.
[2]  Zhang, D.; Wang, K.; Sun, D.C.; Xia, X.H.; Chen, H.Y. Ultrathin layers of densely packed Prussian blue nanoclusters prepared from a ferricyanide solution. Chem. Mater. 2003, 15, 4163–4165, doi:10.1021/cm034594r.
[3]  Nossol, E.; Zarbin, A.J.G. A Simple and innovative route to prepare a novel carbon nanotube/Prussian blue electrode and its utilization as a highly sensitive H2O2 amperometric sensor. Adv. Funct. Mater. 2009, 19, 3980–3986, doi:10.1002/adfm.200901478.
[4]  Karyakin, A.A. Prussian blue and its analogues: Electrochemistry and analytical applications. Electroanalysis 2001, 13, 813–819, doi:10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z.
[5]  Zhang, D.; Wang, K.; Sun, D.C.; Xia, X.H.; Chen, H.Y. Potentiodynamic deposition of Prussian blue from a solution containing single component of ferricyanide and its mechanism investigation. J. Solid State Electrochem. 2003, 7, 561–566, doi:10.1007/s10008-003-0420-x.
[6]  Ellis, D.; Eckhoff, M.; Neff, V.D. Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. J. Chem. Phys. 1981, 85, 1225–1231, doi:10.1021/j150609a026.
[7]  Santos, D.M.F.; Saturnino, P.G.; Lobo, R.F.M.; Sequeira, C.A.C. Direct borohydride/peroxide fuel cells using Prussian blue cathodes. J. Power Sources 2012, 208, 131–137, doi:10.1016/j.jpowsour.2012.02.016.
[8]  Fu, L.; You, S.J.; Zhang, G.Q.; Yang, F.L.; Fang, X.H.; Gong, Z. PB/PANI-modified electrode used as a novel oxygen reduction cathode in microbial fuel cell. Biosen. Bioelectron. 2011, 26, 1975–1979, doi:10.1016/j.bios.2010.08.061.
[9]  Somani, P.; Mandale, A.B.; Radhakrishnan, S. Study and development of conducting polymer-based electrochromic display devices. Acta Mater. 2000, 48, 2859–2871, doi:10.1016/S1359-6454(00)00098-7.
[10]  Zhou, P.; Xue, D.; Luo, H.; Chen, X. Fabrication, structure, and magnetic properties of highly ordered Prussian blue nanowire arrays. Nano Lett. 2002, 2, 845–847, doi:10.1021/nl0256154.
[11]  Mortimer, R.J.; Varley, T.S. In situ spectroelectrochemistry and colour measurement of a complementary electrochromic device based on surface-confined Prussian blue and aqueous solution-phase methyl viologen. Solar Energy Mater. Solar Cells 2012, 99, 213–220, doi:10.1016/j.solmat.2011.11.052.
[12]  Chen, K.C.; Hsu, C.Y.; Hu, C.W.; Ho, K.C. A complementary electrochromic device based on Prussian blue and poly(ProDOT-Et2) with high contrast and high coloration efficiency. Solar Energy Mater.Solar Cells 2011, 95, 2238–2245, doi:10.1016/j.solmat.2011.03.029.
[13]  Karyakin, A.A.; Karykina, E.E. Prussian blue-based “artifical peroxidase” as a transducer for hydrogen peroxide detection. Application to biosensors. Sens. Actuators B 1999, 57, 268–273, doi:10.1016/S0925-4005(99)00154-9.
[14]  Li, J.; Wei, X.; Yuan, Y. Synthesis of magnetic nanoparticles composed by Prussian blue and glucose oxidase for preparing highly sensitive and selective glucose biosensor. Sens. Actuators B 2009, 139, 400–406, doi:10.1016/j.snb.2009.03.004.
[15]  Clemente-León, M.; Coronado, E.; López-Mu?oz, A.; Repetto, D.; Catala, L.; Mallah, T. Patterning of magnetic bimetallic coordination nanoparticles of Prussian blue derivatives by the Langmuir–Blodgett Technique. Langmuir 2012, 28, 4525–4533.
[16]  Chi, Q.; Dong, S. Amperometric biosensors based on the immobilization of oxidases in a Prussian blue film by electrochemical codeposition. Anal. Chim. Acta 1995, 310, 429–436, doi:10.1016/0003-2670(95)00152-P.
[17]  Chu, Z.; Shi, L.; Zhang, Y.; Jin, W.; Xu, N. Hierarchical self-assembly of double structured Prussian blue film for highly sensitive biosensors. J. Mater. Chem. 2011, 21, 11968–11972, doi:10.1039/c1jm11379h.
[18]  Du, D.; Wang, M.; Qin, Y.; Lin, Y. One-step electrochemical deposition of Prussian blue–multiwalled carbon nanotube nanocomposite thin-film: Preparation, characterization and evaluation for H2O2 sensing. J. Mater. Chem. 2010, 20, 1532–1537, doi:10.1039/b919500a.
[19]  Ricci, F.; Palleschi, G. Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosen. Bioelectron. 2005, 21, 389–407, doi:10.1016/j.bios.2004.12.001.
[20]  Itaya, K.; Shoji, N.; Uchida, I. Catalysis of the reduction of molecular oxygen to water at Prussian blue modified electrodes. J. Am. Chem. Soc. 1984, 106, 3423–3429, doi:10.1021/ja00324a007.
[21]  Karyakin, A.A.; Karyakina, E.E.; Gorton, L. Amperometric biosensor for glutamate using Prussian blue-based “Artificial Peroxidase” as a transducer for hydrogen peroxide. Anal. Chem. 2000, 72, 1720–1723, doi:10.1021/ac990801o.
[22]  Ricci, F.; Palleschi, G.; Yigzaw, Y.; Gorton, L.; Ruzgas, T.; Karyakin, E.E. Investigation of the effect of different glassy carbon materials on the performance of Prussian blue based sensors for hydrogen peroxide. Electroanalysis 2003, 15, 175–182, doi:10.1002/elan.200390021.
[23]  Karyakin, A.A.; Gitelmacher, O.V.; Karyakina, E.E. A high-sensitive glucose amperometric biosensor based on Prussian blue modified electrodes. Anal. Lett. 1994, 27, 2861–2869, doi:10.1080/00032719408000297.
[24]  Moscone, D.; D’Ottavi, D.; Compagnone, D.; Palleschi, G.; Amine, A. Construction and analytical characterization of Prussian blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. Anal. Chem. 2001, 73, 2529–2535, doi:10.1021/ac001245x.
[25]  Zhang, D.; Zhang, K.; Yao, Y.L.; Xia, X.H.; Chen, H.Y. Multilayer assembly of Prussian blue nanoclusters and enzyme-immobilized poly(toluidine blue) films and its application in glucose biosensor construction. Langmuir 2004, 20, 7303–7307, doi:10.1021/la049667f.
[26]  Cox, J.A.; Jaworski, R.K.; Kulesza, P.J. Electroanalysis with electrodes modified by inorganic films. Electroanalysis 1991, 3, 869–877, doi:10.1002/elan.1140030902.
[27]  Neff, V.D. Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc. 1978, 125, 886–887, doi:10.1149/1.2131575.
[28]  Garjonyte, R.; Malinauskas, A. Electrocatalytic reactions of hydrogen peroxide at carbon paste electrodes modified by some metal hexacyanoferrates. Sens. Actuators B 1998, 46, 236–241, doi:10.1016/S0925-4005(98)00123-3.
[29]  Hu, Y.L.; Yuan, J.H.; Chen, W.; Wang, K.; Xia, X.H. Photochemical synthesis of Prussian blue film from an acidic ferricyanide solution and application. Electrochem. Commun. 2005, 7, 1252–1256, doi:10.1016/j.elecom.2005.09.002.
[30]  Wang, J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 2005, 17, 7–14, doi:10.1002/elan.200403113.
[31]  Wang, J.; Musameh, M. Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal. Chem. 2003, 75, 2075–2079, doi:10.1021/ac030007+.
[32]  Zhao, J.; Zhang, W.; Sherrell, P.; Razal, J.M.; Huang, X.F.; Minett, A.L.; Chen, J. Carbon nanotube nanoweb–bioelectrode for highly selective dopamine sensing. ACS Appl. Mater. Interfaces 2011, 4, 44–48.
[33]  Baldrich, E.; Gómez, R.; Gabriel, G.; Mu?oz, F.X. Magnetic entrapment for fast, simple and reversivle electrode modification with carbon nanotubes: Application to dopamine detection. Biosens. Bioelectron. 2011, 26, 1876–1882, doi:10.1016/j.bios.2010.03.020.
[34]  Wooten, M.; Gorski, W. Facilitation of NADH electro-oxidation at treated carbon nanotubes. Anal.Chem. 2010, 82, 1299–1304, doi:10.1021/ac902301b.
[35]  Filip, J.; ?ef?ovi?ová, J.; Tom?ík, P.; Gemeiner, P.; Tkac, J. A hyaluronic acid dispersed carbon nanotube electrode used for a mediatorless NADH sensing and biosensing. Talanta 2011, 84, 355–361, doi:10.1016/j.talanta.2011.01.004.
[36]  Zhao, H.Z.; Sun, J.J.; Song, J.; Yang, Q.Z. Direct electron teansfer and conformational change of glucose oxidase on carbon nanotube-based electrodes. Carbon 2010, 48, 1508–1514, doi:10.1016/j.carbon.2009.12.046.
[37]  Qiu, J.D.; Zhou, W.M.; Guo, J.; Wang, R.; Liang, R.P. Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Anal. Biochem. 2009, 385, 264–269, doi:10.1016/j.ab.2008.12.002.
[38]  Shobha Jeykumari, D.R.; Ramaprabhu, S.; Sriman Narayanan, S. A thionine functionalized multiwalled carbon nanotube modified electrode for the determination of hydrogen peroxide. Carbon 2007, 45, 1340–1353, doi:10.1016/j.carbon.2007.01.006.
[39]  Li, Z.; Chen, J.; Li, W.; Chen, K.; Nie, L.; Yao, S. Improved electrochemical properties of prussian blue by multi-walled carbon nanotubes. J. Electroanal. Chem. 2007, 603, 59–66, doi:10.1016/j.jelechem.2007.01.021.
[40]  Li, J.; Qiu, J.D.; Xu, J.J.; Chen, H.Y.; Xia, X.H. The synergistic effect of Prussian-blue-grafted carbon nanotube/poly(4-vinylpyridine) composites for amperometric sensing. Adv. Funct. Mater. 2007, 17, 1574–1580, doi:10.1002/adfm.200600033.
[41]  Gong, K.; Zhu, X.; Zhao, R.; Xiong, S.; Mao, L.; Chen, C. Rational attachment of synthetic triptycene orthoquinone onto carbon nanotubes for electrocatalysis and sensitive detection of thiols. Anal. Chem. 2005, 77, 8158–8165, doi:10.1021/ac0512397.
[42]  Luo, H.; Shi, Z.; Li, N.; Gu, Z.; Zhuang, Q. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem. 2001, 73, 915–920, doi:10.1021/ac000967l.
[43]  Zeng, J.; Wei, W.; Liu, X.; Wang, Y.; Luo, G. A simple method to fabricate a Prussian blue nanoparticles/carbon nanotubes/poly(1,2-diaminobenzene) based glucose biosensor. Microchim. Acta 2008, 160, 261–267, doi:10.1007/s00604-007-0818-8.
[44]  Chen, J.; Hamon, M.A.; Hu, H.; Chen, Y.; Rao, A.M.; Eklund, P.C.; Haddon, R.C. Solution properties of single-walled carbon nanotubes. Science 1998, 282, 95–98, doi:10.1126/science.282.5386.95.
[45]  Sha, Y.; Qian, L.; Ma, Y.; Bai, H.; Yang, X. Multilayer films of carbon nanotubes and redox polymer on screen-printed carbon electrodes for electrocatalysis of ascorbic acid. Talanta 2006, 70, 556–560, doi:10.1016/j.talanta.2006.01.007.
[46]  Itaya, K.; Uchida, I.; Neff, V.D. Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc. Chem. Res. 1986, 19, 162–168, doi:10.1021/ar00126a001.
[47]  Pyrasch, M.; Toutianoush, A.; Jin, W.; Schnepf, J.; Tieke, B. Self-assembled films of Prussian blue and analogues:? Optical and electrochemical properties and application as ion-sieving membranes. Chem. Mater. 2003, 15, 245–254, doi:10.1021/cm021230a.
[48]  Choi, H.C.; Shim, M.; Bangsaruntip, S.; Dai, H. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. J. Am. Chem. Soc. 2002, 124, 9058–9059, doi:10.1021/ja026824t.
[49]  Qu, L.; Dai, L. Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 10806–10807, doi:10.1021/ja053479+.
[50]  Wang, J.; Li, M.; Shi, Z.; Li, N.; Gu, Z. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem. 2002, 74, 1993–1997, doi:10.1021/ac010978u.
[51]  Li, J.; Yao, Y.; Shiu, K.K. Layer-by-layer assembly of Prussian blue and carbon nanotube composites for the sensitive detection of hydrogen peroxide. Anal. Sci. 2010, 26, 431–435, doi:10.2116/analsci.26.431.
[52]  Zhou, D.M.; Dai, Y.Q.; Shiu, K.K. Poly(phenylenediamine) film for the construction of glucose biosensors based on platinized glassy carbon electrode. J. Appl. Electrochem. 2010, 40, 1997–2003, doi:10.1007/s10800-010-0179-6.
[53]  Sasso, S.V.; Pierce, R.J.; Walla, R.; Yacynch, A.M. Electropolymerized 1,2-diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensors. Anal. Chem. 1990, 62, 1111–1117, doi:10.1021/ac00210a004.
[54]  Dai, Y.Q.; Shiu, K.K. Glucose biosensor based on multi-walled carbon nanotube modified glassy carbon electrode. Electroanalysis 2004, 16, 1697–1703, doi:10.1002/elan.200303016.
[55]  Yao, Y.; Shiu, K.K. Electron transfer properties of different carbon nanotube materials and their applications in glucose biosensors. Anal. Bioanal. Chem. 2007, 387, 303–309.
[56]  Dai, Y.Q.; Zhou, D.M.; Shiu, K.K. Permeability and permselectivity of polyphenylenediamine films synthesized at a palladium disk electrode. Electrochim. Acta 2006, 52, 297–303, doi:10.1016/j.electacta.2006.05.010.
[57]  Honda, K.; Hayashi, H. Prussian blue containing nafion composite film as rechargeable battery. J. Electrochem. Soc. 1987, 134, 1330–1334, doi:10.1149/1.2100668.
[58]  Garjonyte, R.; Malinauskas, A. Operational stability of amperometric hydrogen peroxide sensors, based on ferrous and copper hexacyanoferrates. Sens. Actuators B 1998, 56, 93–97.
[59]  Hou, W.; Wang, E. Flow-injection amperometric detection of hydrazine by electrocatalytic oxidation at a Prussian blue film-modified electrode. Anal. Chim. Acta 1992, 257, 275–280, doi:10.1016/0003-2670(92)85180-E.
[60]  Gorton, L. Carbon paste electrodes modified with enzymes, tissues, and cells. Electroanalysis 1995, 7, 23–45, doi:10.1002/elan.1140070104.
[61]  Wen, Z.; Ci, S.; Li, J. Pt nanoparticles inserting in carbon nanotube arrays: Nanocomposites for glucose biosensors. J. Phys. Chem. C 2009, 113, 13482–13487, doi:10.1021/jp902830z.
[62]  Wang, Y.; Wei, W.; Zeng, J.; Liu, X.; Zeng, X. Fabrication of a copper nanoparticle/chitosan/carbon nanotube-modified glassy carbon electrode for electrochemical sensing of hydrogen peroxide and glucose. Microchim. Acta 2008, 160, 253–260, doi:10.1007/s00604-007-0844-6.
[63]  Rakhi, R.B.; Sethupathi, K.; Ramaprabhu, S. A glucose biosensor based on deposition of glucose oxidase onto crystalline gold nanoparticle modified carbon nanotube electrode. J. Phys. Chem. B 2009, 113, 3190–3194, doi:10.1021/jp810235v.
[64]  Liu, Y.; Chu, Z.; Zhang, Y.; Jin, W. Amperometric glucose biosensor with high sensitivity based on self-assembled Prussian blue modified electrode. Electrochim. Acta 2009, 54, 7490–7494, doi:10.1016/j.electacta.2009.08.002.
[65]  Wang, X.; Gu, H.; Yin, F.; Tu, Y. A glucose biosensor based on Prussian blue/chitosan hydrib film. Biosens. Bioelectron. 2009, 24, 1527–1530, doi:10.1016/j.bios.2008.09.025.
[66]  Zhai, X.; Wei, W.; Zeng, J.; Liu, X.; Gong, S. New nanocomposite based on Prussian blue nanoparticles/carbon nanotubes/chitosan and its application for assembling of amperometric glucose biosensor. Anal. Lett. 2006, 39, 913–926, doi:10.1080/00032710600614057.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133