The vitamin folate is recognized as beneficial health-wise in the prevention of neural tube defects, anemia, cardiovascular diseases, poor cognitive performance, and some forms of cancer. However, suboptimal dietary folate intake has been reported in a number of countries. Several national health authorities have therefore introduced mandatory food fortification with synthetic folic acid, which is considered a convenient fortificant, being cost-efficient in production, more stable than natural food folate, and superior in terms of bioavailability and bioefficacy. Other countries have decided against fortification due to the ambiguous role of synthetic folic acid regarding promotion of subclinical cancers and other adverse health effects. This paper reviews recent studies on folate bioavailability after intervention with folate from food. Our conclusions were that limited folate bioavailability data are available for vegetables, fruits, cereal products, and fortified foods, and that it is difficult to evaluate the bioavailability of food folate or whether intervention with food folate improves folate status. We recommend revising the classical approach of using folic acid as a reference dose for estimating the plasma kinetics and relative bioavailability of food folate.
References
[1]
Katan, M.B.; Boekschoten, M.V.; Connor, W.E.; Mensink, R.P.; Seidell, J.; Vessby, B.; Willett, W. Which Are the Greatest Recent Discoveries and the Greatest Future Challenges in Nutrition? Eur. J. Clin. Nutr. 2009, 63, 2–10.
[2]
NNR. Nordic Nutrition Recommendations NNR 2004 Integrating Nutrition and Physical Activity; Nordic Council of Ministers: Stockholm, Sweden, 2005.
[3]
Dhonukshe-Rutten, R.A.M.; de Vries, J.H.M.; de Bree, A.; van der Put, N.; van Staveren, W.A.; de Groot, L. Dietary Intake and Status of Folate and Vitamin B12 and Their Association with Homocysteine and Cardiovascular Disease in European Populations. Eur. J. Clin. Nutr. 2009, 63, 18–30.
[4]
de Bree, A.; van Dusseldorp, M.; Brouwer, I.A.; van het Hof, K.H.; Steegers-Theunissen, R.P.M. Review Folate Intake in Europe: Recommended, Actual and Desired Intake. Eur. J. Clin. Nutr. 1997, 51, 643–660.
[5]
Bergstrom, L. Nutrient Losses and Gains in the Preparation of Foods; National Food Administration: Sweden, Uppsala, 1994.
Gregory, J.F. Folate. In Food Chemistry; Fennema, O.R., Ed.; Marcel Dekker: New York, NY, USA, 1996; pp. 590–616.
[8]
Mosley, B.S.; Cleves, M.A.; Siega-Riz, A.M.; Shaw, G.M.; Canfield, M.A.; Waller, D.K.; Werler, M.M.; Hobbs, C.A. Neural Tube Defects and Maternal Folate Intake among Pregnancies Conceived after Folic acid Fortification in the United States. Am. J. Epidemiol. 2009, 169, 9–17.
[9]
Yang, Q.; Botto, L.D.; Erickson, J.D.; Berry, R.J.; Sambell, C.; Johansen, H.; Friedman, J.M. Improvement in Stroke Mortality in Canada and the United States, 1990 to 2002. Circulation 2006, 113, 1335–1343.
[10]
Shirodaria, C.; Antoniades, C.; Lee, J.; Jackson, C.E.; Robson, M.D.; Francis, J.M.; Moat, S.J.; Ratnatunga, C.; Pillai, R.; Refsum, H.; Neubauer, S.; Channon, K.M. Global Improvement of Vascular Function and Redox State with Low-Dose Folic Acid. Circulation 2007, 115, 2262–2270.
CDC. Water-Soluble Vitamins & Related Biochemical Compounds; Centers for Disease Control and Prevention: Atlanta, GA, USA. Available online: http://www.cdc.gov/nutritionreport/part_1.html (accessed on 13 July 2009).
[13]
Hannon-Fletcher, M.P.; Armstrong, N.C.; Scott, J.M.; Pentieva, K.; Bradbury, I.; Ward, M.; Strain, J.J.; Dunn, A.A.; Molloy, A.M.; Kerr, M.A.; McNulty, H. Determining Bioavailability of Food Folates in a Controlled Intervention Study. Am. J. Clin. Nutr. 2004, 80, 911–918.
[14]
Brouwer, I.A.; van Dusseldorp, M.; West, C.; Meyboom, S.; Thomas, C.M.G.; Duran, M.; van het Hof, K.H.; Eskes, T.K.A.B.; Hautvast, G.A.J.; Steegers-Theunissen, R.P.M. Dietary Folate from Vegetables and Citrus Fruit Decreases Plasma Homocysteine Concentrations in Humans in a Dietary Controlled trial. J. Nutr. 1999, 129, 1135–1139.
[15]
Gregory, J.F. The Bioavailability of Folate. In Folate in Health and Disease; Bailey, L.B., Ed.; Marcel Dekker: New York, NY, USA, 1995; pp. 195–235.
[16]
Melse-Boonstra, A.; Verhoef, P.; West, C. Quantifying Folate Bioavailability: A Critical Appraisal of Methods. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 539–545.
[17]
Wright, A.J.A.; Finglas, P.M.; Dainty, J.R.; Hart, D.J.; Wolfe, C.A.; Southon, S.; Gregory, J.F. Single Oral Doses of C-13 Forms of Pteroylmonoglutamic Acid and 5-Formyltetrahydrofolic Acid Elicit Differences in Short-Term Kinetics of Labelled and Unlabelled Folates in Plasma: Potential Problems in Interpretation of Folate Bioavailability Studies. Br. J. Nutr. 2003, 90, 363–371.
[18]
Wright, A.J.A.; Finglas, P.M.; Dainty, J.R.; Wolfe, C.A.; Hart, D.J.; Wright, D.M.; Gregory, J.F. Differential Kinetic Behavior and Distribution for Pteroylglutamic Acid and Reduced Folates: A Revised Hypothesis of the Primary Site of PteGlu Metabolism in Humans. J. Nutr. 2005, 135, 619–623.
[19]
Wright, A.J.A.; King, M.J.; Wolfe, C.A.; Powers, H.J.; Finglas, P.M. Comparison of (6S)-5-methyltetrahydrofolic Acid v. Folic Acid as the Reference Folate in Longer-term Human Dietary Intervention Studies Assessing the Relative Bioavailability of Natural Food Folates: Comparative Changes in Folate Status Following a 16-week Placebo-controlled Study in Healthy Adults. Br. J. Nutr. , 103, 724–729. 19852872
[20]
Pfeiffer, C.M.; Fazili, Z.; Zhang, M. Folate Analytical Methodology. In Folate in Health and Disease, 2nd; Bailey, L.B., Ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 517–574.
[21]
Finglas, P.M.; Scott, K.J.; Witthoft, C.M.; van den Berg, H.; de Froidmont-Gortz, I. The Certification of the Mass Fraction of Vitamins in Four Reference Materials: Wholemeal Flour (CRM 121), Milk powder (CRM 421), Lyophilised Mixed Vegetables (CRM 485) and Lyophilised Pig’s Liver (CRM 487); EUR-Report 18320; Office for Official Publications, Commission of the European Union: Luxembourg, Luxembourg, 1999.
[22]
Vahteristo, L.T.; Finglas, P.M.; Witthoft, C.M.; Wigertz, K.; Seale, R.; De Froidmont-Gortz, I. Third EU MAT Intercomparison Study on Food Folate Analysis Using HPLC Procedures. Food Chem. 1996, 57, 109–111.
[23]
Caudill, M.A. Folate Bioavailability: Implications for Establishing Dietary Recommendations and Optimizing status. Am. J. Clin. Nutr. 2010, 91, 1455S–1460S.
[24]
Kim, Y.I. Folate and Colorectal Cancer: An Evidence-Based Critical Review. Mol. Nutr. Food Res. 2007, 51, 267–292.
[25]
Mason, J.B.; Dickstein, A.; Jacques, P.F.; Haggarty, P.; Selhub, J.; Dallal, G.; Rosenberg, I.H. A Temporal Association between Folic Acid Fortification and an Increase in Colorectal Cancer Rates May Be Illuminating Important Biological Principles: A Hypothesis. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 1325–1329.
[26]
Smith, A.D.; Kim, Y.-I.; Refsum, H. Is Folic Acid Good for Everyone? Am. J. Clin. Nutr. 2008, 87, 517–533. 18326588
[27]
Halsted, C.H. testinal Absorption of Dietary Folates. In Folic Acid Metabolism in Health and Disease; Picciano, M.F., Gregory, J.F., Stokstad, E.L., Eds.; Wiley-Liss: New York, NY, USA, 1990; pp. 23–46.
[28]
Zhao, R.; Matherly, L.H.; Goldman, I.D. Membrane Transporters and Folate Homeostasis: Intestinal Absorption and Transport into Systemic Compartments and Tissues. Expert Rev. Mol. Med. 2009, 11, e4, doi:10.1017/S1462399409000969. 19173758
[29]
Aufreiter, S.; Gregory, J.F., III; Pfeiffer, C.M.; Fazili, Z.; Kim, Y.-I.; Marcon, N.; Kamalaporn, P.; Pencharz, P.B.; O’Connor, D.L. Folate is Absorbed across the Colon of Adults: Evidence from Cecal Infusion of 13C-Labeled [6S]-5-formyltetrahydrofolic Acid. Am. J. Clin. Nutr. 2009, 90, 116–123. 19439459
[30]
Camilo, E.; Zimmerman, J.; Mason, J.B.; Golner, B.; Russell, R.; Selhub, J.; Rosenberg, I.H. Folate Synthesized by Bacteria in the Human Upper Small Intestine is Assimilated by the Host. Gastroenterology 1996, 110, 991–998.
[31]
Asrar, F.M.; O’Connor, D.L. Bacterially Synthesized Folate and Supplemental Folic Acid Are Absorbed across the Large Intestine of Piglets. J. Nutr. Biochem. 2005, 16, 587–593.
[32]
Gregory, J.F.; Williamson, J.; Liao, J.F.; Bailey, L.B.; Toth, J.P. Kinetic Model of Folate Metabolism in Nonpregnant Women Consuming [H-2(2)]Folic Acid: Isotopic Labeling of Urinary Folate and the Catabolite Para-acetamidobenzoylglutamate Indicates Slow, Intake-Dependent, Turnover of Folate Pool. J. Nutr. 1998, 128, 1896–1906.
[33]
Herbert, V. Recommended Dietary Intakes (RDI) of Folate in Humans. Am. J. Clin. Nutr. 1987, 45, 661–670.
Wagner, C. Biochemical Role of Folate in Cellular Metabolism. In Folate in Health and Disease;Clinical Nutrition in Health and Disease 1; Bailey, L.B., Ed.; Marcel Dekker: New York, NY, USA, 1995; pp. 23–42.
[36]
Tamura, T.; Picciano, M.F. Folate and Human Reproduction. Am. J. Clin. Nutr. 2006, 83, 993–1016.
[37]
Reed, M.C.; Nijhout, H.F.; Neuhouser, M.L.; Gregory, J.E.; Shane, B.; James, S.J.; Boynton, A.; Ulrich, C.M. A Mathematical Model Gives Insights into Nutritional and Genetic Aspects of Folate-Mediated One-Carbon Metabolism. J. Nutr. 2006, 136, 2653–2661.
[38]
Ohrvik, V. Folate Bioavailability. In-vitro Experiments and In-vivo Trials. Swedish University of Agricultural Sciences, Uppsala, Sweden, 2009.
[39]
Gregory, J.F.; Caudill, M.A.; Opalko, F.J.; Bailey, L.B. Kinetics of Folate Turnover in Pregnant Women (Second Trimester) and Nonpregnant Controls during Folic Acid Supplementation: Stable-Isotopic Labeling of Plasma Folate, Urinary Folate and Folate Catabolites Shows Subtle Effects of Pregnancy on Turnover of Folate Pools. J. Nutr. 2001, 131, 1928–1937.
[40]
Witthoft, C.; Stralsjo, L.; Berglund, G.; Lundin, E. A Human Model to Determine Folate Bioavailability from Food: A Pilot Study for Evaluation. Scand. J. Nutr. 2003, 47, 6–18.
[41]
Pfeiffer, C.M.; Rogers, L.M.; Bailey, L.B.; Gregory, J.F. Absorption of Folate from Fortified Cereal-Grain Products and of Supplemental Folate Consumed with or Without Food Determined Using a Dual-Label Stable-Isotope Protocol. Am. J. Clin. Nutr. 1997, 66, 1388–1397.
[42]
Rogers, L.M.; Pfeiffer, C.M.; Bailey, L.B.; Gregory, J.F. A Dual-Label Stable-Isotopic Protocol Is Suitable for Determination of Folate Bioavailability in Humans: Evaluation of Urinary Excretion and Plasma Folate Kinetics of Intravenous and Oral Doses of [C-13(5)] and [H-2(2)]Folic Acid. J. Nutr. 1997, 127, 2321–2327.
[43]
Gregory, J.F.; Quinlivan, E.P. In vivo Kinetics of Folate Metabolism. Ann. Rev. Nutr. 2002, 22, 199–220.
[44]
Witthoft, C.M.; Arkbage, K.; Johansson, M.; Lundin, E.; Berglund, G.; Zhang, J.X.; Lennernas, H.; Dainty, J.R. Folate Absorption from Folate-Fortified and Processed Foods Using a Human Ileostomy Model. Br. J. Nutr. 2006, 95, 181–187.
[45]
Konings, E.J.M.; Troost, F.J.; Castenmiller, J.J.M.; Roomans, H.H.S.; van den Brandt, P.A.; Saris, W.H.M. Intestinal Absorption of Different Types of Folate in Healthy Subjects with an Ileostomy. Br. J. Nutr. 2002, 88, 235–242.
[46]
Ohrvik, V.E.; Buttner, B.E.; Rychlik, M.; Lundin, E.; Witthoft, C.M. Folate Bioavailability from Breads and a Meal Assessed with a Human Stable-Isotope Area under the Curve and Ileostomy Model. Am. J. Clin. Nutr. 2010, 92, 532–538.
[47]
Buttner, B.E.; Ohrvik, V.E.; Witthoft, C.M.; Rychlik, M. Quantification of Isotope-Labelled and Unlabelled Folates in Plasma, Ileostomy and Food Samples. Anal. Bioanal. Chem. 2011, 399, 429–439.
[48]
Wilcken, B.; Bamforth, F.; Li, Z.; Zhu, H.; Ritvanen, A.; Redlund, M.; Stoll, C.; Alembik, Y.; Dott, B.; Czeizel, A.E.; et al. Geographical and Ethnic Variation of the 677C>T Allele of 5,10 Methylenetetrahydrofolate Reductase (MTHFR): Findings from over 7000 Newborns from 16 Areas World Wide. J. Med. Genet. 2003, 40, 619–625.
[49]
Rozen, R. Folate and Genetics. J. Food Sci. 2004, 69, S65–S67.
[50]
Gregory, J.F.; Quinlivan, E.P.; Davis, S.R. Integrating the Issues of Folate Bioavailability, Intake and Metabolism in the Era of Fortification. Trends Food Sci. Technol. 2005, 16, 229–240.
[51]
Morin, I.; Devlin, A.M.; Leclerc, D.; Sabbaghian, N.; Halsted, C.H.; Finnell, R.; Rozen, R. Evaluation of Genetic Variants in the Reduced Folate Carrier and in Glutamate Carboxypeptidase II for Spina Bifida Risk. Mol. Genet. Metab. 2003, 79, 197–200.
[52]
Tozer, T.; Rowland, M. Introduction to Pharmacokinetics and Pharmacodynamics; Lippincott Williams & Wilkins: Baltimore County, MD, USA, 2006.
[53]
Gregory, J.F. Bioavailability of Folate. Eur. J. Clin. Nutr. 1997, 51, S54–S59.
[54]
Bouckeart, K.P.; Slimani, N.; Nicolas, G.; Vignat, J.; Wright, A.J.A.; Roe, M.; Witthoft, C.M.; Finglas, P.M. Critical Evaluation of Folate Data in European and International Databases: Recommendations for Standardization in International Nutritional Studies. Mol. Nutr. Food Res. 2011, 55, 166–180.
[55]
AACC International. Approved Methods of Analysis, 11th ed. Method 86-47.01. Total Folate in Cereal Products—Microbiological Assay Using Trienzyme Extraction; AACC International: St. Paul, MN, USA, 2000.
[56]
DeVries, J.W.; Keagy, P.M.; Hudson, C.A.; Rader, J.I. AACC Collaborative Study of a Method for Determining Total Folate in Cereal Products-Microbiological Assay Using Trienzyme Extraction (AACC method 86-47). Cereal Food World 2001, 46, 216–219.
[57]
Cho, S.; Choi, Y.; Lee, J.; Eitenmiller, R.R. Optimization of Enzyme Extractions for Total Folate in Cereals Using Response Surface Methodology. J. Agric. Food Chem. 2010, 58, 10781–10786.
Ohrvik, V.E.; Olsson, J.C.; Sundberg, B.E.; Witthoft, C.M. Effect of 2 pieces of nutritional advice on folate status in Swedish women: A randomized controlled trial. Am. J. Clin. Nutr. 2009, 89, 1053–1058.
[60]
Vahteristo, L.; Kariluoto, S.; Barlund, S.; Karkkainen, M.; Lamberg-Allardt, C.; Salovaara, H.; Piironen, V. Functionality of Endogenous Folates from Rye and Orange Juice Using Human in vivo Model. Eur. J. Nutr. 2002, 41, 271–278.
[61]
Winkels, R.M.; Brouwer, I.A.; Siebelink, E.; Katan, M.B.; Verhoef, P. Bioavailability of Food Folates is 80% of that of Folic Acid. Am. J. Clin. Nutr. 2007, 85, 465–473.
[62]
Venn, B.J.; Mann, J.I.; Williams, S.M.; Riddell, L.J.; Chisholm, A.; Harper, M.J.; Aitken, W. Dietary Counseling to Increase Natural Folate Intake: A Randomized, Placebo-Controlled Trial in Free-living Subjects to Assess Effects on Serum Folate and Plasma Total Homocysteine. Am. J. Clin. Nutr. 2002, 76, 758–765.
[63]
Fenech, M.; Noakes, M.; Clifton, P.; Topping, D. Aleurone Flour Increases Red-Cell Folate and Lowers Plasma Homocyst(E)Ine Substantially in Man. Br. J. Nutr. 2005, 93, 353–360.
[64]
Pentieva, K.; McNulty, H.; Reichert, R.; Ward, M.; Strain, J.J.; McKillop, D.J.; McPartlin, J.M.; Connolly, E.; Molloy, A.; Kramer, K.; Scott, J.M. The Short-term Bioavailabilities of [6S]-5-Methyltetrahydrofolate and Folic Acid Are Equivalent in Men. J. Nutr. 2004, 134, 580–585.
[65]
Fenech, M.; Noakes, M.; Clifton, P.; Topping, D. Aleurone Flour is a Rich Source of Bioavailable Folate in Humans. J. Nutr. 1999, 129, 1114–1119.
[66]
Cuskelly, G.J.; McNulty, H.; Scott, J.M. Effect of Increasing Dietary Folate on Red-Cell Folate: Implications for Prevention of Neural Tube Defects. Lancet 1996, 347, 657–659.
[67]
Broekmans, W.M.R.; Klopping-Ketelaars, I.A.A.; Schuurman, C.R.W.C.; Verhagen, H.; van den Berg, H.; Kok, F.J.; van Poppel, G. Fruits and Vegetables Increase Plasma Carotenoids and Vitamins and Decrease Homocysteine in Humans. J. Nutr. 2000, 130, 1578–1583.
[68]
Bogers, R.P.; Dagnelie, P.C.; Bast, A.; van Leeuwen, M.; van Klaveren, J.D.; van den Brandt, P.A. Effect of Increased Vegetable and Fruit Consumption on Plasma Folate and Homocysteine Concentrations. Nutrition 2007, 23, 97–102.
[69]
Ashfield-Watt, P.A.L.; Whiting, J.M.; Clark, Z.E.; Moat, S.J.; Newcombe, R.G.; Burr, M.L.; McDowell, I.F.W. A Comparison of the Effect of Advice to Eat Either “5-A-Day” Fruit and Vegetables or Folic Acid-Fortified Foods on Plasma Folate and Homocysteine. Eur. J. Clin. Nutr. 2003, 57, 316–323.
[70]
Prinz-Langenohl, R.; Bronstrup, A.; Thorand, B.; Hages, M.; Pietrzik, K. Availability of Food Folate in Humans. J. Nutr. 1999, 129, 913–916.
[71]
Enghardt-Barbieri, H.; Lindvall, C. Swedish Nutrition Recommendations Objectified (SNO)-Basis for General Advice on Food Consumption for Healthy Adults; National Food Administration: Sweden, Uppsala, 2005.
[72]
Summers, C.M.; Mitchell, L.E.; Stanislawska-Sachadyn, A.; Baido, S.F.; Blair, I.A.; Von Feldt, J.M.; Whitehead, A.S. Genetic and Lifestyle Variables Associated with Homocysteine Concentrations and the Distribution of Folates Derivatives in Healthy Premenopausal Women. Birth Defects Res. A 2010, 88, 679–688.
[73]
McKinley, M.C.; Strain, J.J.; McPartlin, J.; Scott, J.M.; McNulty, H. Plasma Homocysteine Is Not Subject to Seasonal Variation. Clin. Chem. 2001, 47, 1430–1436.
[74]
Clarke, R.; Woodhouse, P.; Ulvik, A.; Frost, C.; Sherliker, P.; Refsum, H.; Ueland, P.M.; Khaw, K.-T. Variability and determinants of Total Homocysteine Concentrations in Plasma in an Elderly Population. Clin. Chem. 1998, 44, 102–107.
Antoniades, C.; Shirodaria, C.; Leeson, P.; Baarholm, O.A.; Van-Assche, T.; Stefanadis, C.; Refsum, H.; Channon, K.M. MTHFR 677 C>T Polymorphism Reveals Functional Importance for Methyltetrahydrofolate, Not Homocysteine, in Regulation of Vascular Redox State and Endothelial Function in Human Atherosclerosi. Circulation 2009, 119, 2507–2515.
[77]
Tamura, T.; Stokstad, E.L. Availability of Food Folate in Man. Br. J. Haematol. 1973, 25, 513–532.
[78]
Achon, M.; Arrate, A.; Alonso-Aperte, E.; Varela-Moreiras, G. Plasma Folate Concentrations after a Single Dose Ingestion of Whole and Skimmed Folic Acid Fortified Milks in Healthy Subjects. Eur. J. Nutr. 2011, 50, 119–125.
[79]
Colman, N.; Green, R.; Metz, J. Prevention of Folate Deficiency by Food Fortification. II. Absorption of Folic Acid from Fortified Staple Foods. Am. J. Clin. Nutr. 1975, 28, 459–464. 805518
[80]
Finglas, P.M.; Witthoft, C.M.; Vahteristo, L.; Wright, A.J.A.; Southon, S.; Mellon, F.A.; Ridge, B.; Maunder, P. Use of an Oral/Intravenous Dual-Label Stable-Isotope Protocol to Determine Folic Acid Bioavailability from Fortified Cereal Grain Foods in Women. J. Nutr. 2002, 132, 936–939.
[81]
Wei, M.M.; Bailey, L.B.; Toth, J.P.; Gregory, J.F. Bioavailability for Humans of Deuterium-Labeled Monoglutamyl and Polyglutamyl Folates Is Affected by Selected Foods. J. Nutr. 1996, 126, 3100–3108.
[82]
Gregory, J.F.; Bhandari, S.D.; Bailey, L.B.; Toth, J.P.; Baumgartner, T.G.; Cerda, J.J. Relative Bioavailability of Deuterium-Labeled Monoglutamyl and Hexaglutamyl Folates in Human-Subjects. Am. J. Clin. Nutr. 1991, 53, 736–740.
[83]
Buchholz, B.A.; Arjomand, A.; Dueker, S.R.; Schneider, P.D.; Clifford, A.J.; Vogel, J.S. Intrinsic Erythrocyte Labeling and Attomole Pharmacokinetic Tracing of 14C-Labeled Folic Acid with Accelerator Mass Spectrometry. Anal. Biochem. 1999, 269, 348–352.
[84]
Wigertz, K. Milk Folates-Characterisation and Availability. Lund University, Lund, Sweden, 1997.
[85]
Ashokkumar, B.; Mohammed, Z.M.; Vaziri, N.D.; Said, H.M. Effect of Folate Oversupplementation on Folate Uptake by Human Intestinal and Renal Epithelial Cells. Am. J. Clin. Nutr. 2007, 86, 159–166.
[86]
Ohrvik, V.E.; Buttner, B.E.; Rychlik, M.; Lundin, E.; Witthoft, C.M. The Bioavailability of Folic Acid and Reduced Folate Bioavailability from Foods and Pharmaceutical Preparations Assessed With a Human Stable-Isotope Area under the Curve and Ileostomy Model. 2011. unpublished work.