It takes more than 20 years before the human brain obtains its complex, adult configuration. Most dramatic developmental changes occur prenatally and early postnatally. During development, long-chain polyunsaturated fatty acids (LCPUFA) such as doxosahexaenoic acid (DHA) and arachidonic acid (AA) are accreted in the brain. Since breastfeeding is associated with a better developmental outcome than formula feeding, and human milk in contrast to traditional standard formula contains LCPUFA, the question arose whether LCPUFA supplementation of infant formula may promote the neurodevelopmental outcome. The current paper reviews the evidence available in full-term infants. It concludes that postnatal supplementation of formula with LCPUFA is associated with a beneficial effect on short-term neurodevelopmental outcome. However, no evidence is available that LCPUFA supplementation enhances neurodevelopmental outcome in full-term infants beyond the age of four months. Nevertheless, it should be realized that very limited information is available on the effect of LCPUFA supplementation on neurodevelopmental outcome at school age or later. It is conceivable that effects of LCPUFA supplementation first emerge or re-emerge at school age when more complex neural functions are expressed.
References
[1]
Hoefer, C.; Hardy, M.C. Later development of breast fed and artificially fed infants. J. Am. Med. Assoc.?1929, 92, 615–620, doi:10.1001/jama.1929.02700340015006.
[2]
Lanting, C.I.; Fidler, V.; Huisman, M.; Touwen, B.C.; Boersma, E.R. Neurological differences between 9-year-old children fed breast-milk or formula-milk as babies. Lancet?1994, 344, 1319–1322, doi:10.1016/S0140-6736(94)90692-0. 7968027
[3]
De Jong, C.; Kikkert, H.K.; Fidler, V.; Hadders-Algra, M. The Groningen LCPUFA study: no effect of postnatal long-chain polyunsaturated fatty acids in healthy term infants on neurological condition at 9 years. Br. J. Nutr.?2010. Epub ahead of print.
[4]
Anderson, J.W.; Johnstone, B.M.; Remley, D.T. Breast-feeding and cognitive development: a meta-analysis. Am. J. Clin. Nutr.?1999, 70, 525–535. 10500022
[5]
Julvez, J.; Ribas-Fitó, N.; Forns, M.; Garcia-Esteban, R.; Torrent, M.; Sunyer, J. Attention behaviour and hyperactivity at age 4 and duration of breast-feeding. Acta Paediatr.?2007, 96, 842–847, doi:10.1111/j.1651-2227.2007.00273.x. 17537012
[6]
Der, G.; Batty, G.D.; Deary, I.J. Effect of breast feeding on intelligence in children: prospective sibling pairs analysis, and meta-analysis. B.M.J.?2006, 333, 945, doi:10.1136/bmj.38978.699583.55.
[7]
Kramer, M.S.; Aboud, F.; Mironova, E.; Vanilovich, I.; Platt, R.W.; Matush, L.; Igumnov, S.; Fombonne, E.; Bogdanovich, N.; Ducruet, T.; Collet, J.P.; Chalmers, B.; Hodnett, E.; Davidovsky, S.; Skugarevsky, O.; Trofimovich, O.; Kozlova, L.; Shapiro, S. Promotion of Breastfeeding Intervention Trial (PROBIT) Study Group. Breastfeeding and child cognitive development: new evidence from a large randomized trial. Arch. Gen. Psychiatry?2008, 65, 578–584, doi:10.1001/archpsyc.65.5.578. 18458209
[8]
Brenna, J.T.; Varamini, Bl.; Jensen, R.G.; Diersen-Schade, D.A.; Boettcher, J.A.; Arterburn, L.M. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am. J. Clin. Nutr.?2007, 85, 1457–1464. 17556680
[9]
Uylings, H.B.M. Development of the human cortex and the concept of ‘critical’ or ‘sensitive’ periods. Language Learning?2006, 56, 59–90, doi:10.1111/j.1467-9922.2006.00355.x.
[10]
De Graaf-Peters, V.B.; Hadders-Algra, M. Ontogeny of the human central nervous system: what is happening when? Early Hum. Dev.?2006, 82, 257–266, doi:10.1016/j.earlhumdev.2005.10.013. 16360292
[11]
Hadders-Algra, M. Postural Control: A Key Issue in Developmental Disorders.; Hadders-Algra, M., Brogren Carlberg, E., Eds.; Clin. Dev. Med. No. 179. Mac Keith Press: London, UK, 2008; pp. 22–73.
[12]
Krubitzer, L.; Kaas, J. The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr. Opin. Neurobiol.?2005, 15, 444–453, doi:10.1016/j.conb.2005.07.003. 16026978
[13]
Mrzljak, L.; Uylings, H.B.; Kostovic, I.; Vaneden, C.G. Prenatal development of neurons in the human prefrontal cortex. II. A quantitative Golgi study. J. Comp. Neurol.?1992, 316, 485–496. 1577996
[14]
Rakic, P. Pre- and post-developmental neurogenesis in primates. Clin. Neurosci. Res.?2002, 2, 29–39, doi:10.1016/S1566-2772(02)00005-1.
[15]
Miller, R.H. Regulation of oligodendrocyte development in the vertebrate CNS. Prog. Neurobiol.?2002, 67, 451–467, doi:10.1016/S0301-0082(02)00058-8. 12385864
[16]
Sowell, E.R.; Trauner, D.A.; Gamst, A.; Jernigan, T.L. Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev. Med. Child. Neurol.?2002, 44, 4–16, doi:10.1017/S0012162201001591. 11811649
[17]
Rakic, S.; Zecevic, N. Programmed cell death in the developing human telencephalon. Eur. J. Neurosci.?2000, 12, 2721–2734, doi:10.1046/j.1460-9568.2000.00153.x. 10971615
[18]
Galea, M.P.; Darian-Smith, I. Postnatal maturation of the direct corticospinal projections in the macaque monkey. Cereb. Cortex?1995, 5, 518–540, doi:10.1093/cercor/5.6.518. 8590825
[19]
Eyre, J.A.; Taylor, J.P.; Villagra, F.; Smith, M.; Miller, S. Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology?2001, 57, 1543–1554. 11706088
[20]
Goda, Y.; Davis, G.W. Mechanisms of synapse assembly and disassembly. Neuron?2003, 40, 243–264, doi:10.1016/S0896-6273(03)00608-1. 14556707
[21]
Prechtl, H.F.R. Continuity of Neural Functions Form Prenatal to Postnatal Life; Clin. Dev. Med. No. 94; Blackwell Scientific Publications: Oxford, UK, 1984.
[22]
Kostovic, I.; Judas, M. Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Dev. Med. Child Neurol.?2006, 48, 388–393, doi:10.1017/S0012162206000831. 16608549
[23]
Hadders-Algra, M. Putative neural substrate of normal and abnormal general movements. Neurosci. Biobehav. Rev.?2007, 31, 1181–1190, doi:10.1016/j.neubiorev.2007.04.009. 17568672
[24]
Hadders-Algra, M.; Prechtl, H.F.R. Developmental course of general movements in early infancy. I: De-scriptive analysis of change in form. Early. Hum. Dev.?1992, 28, 201–214, doi:10.1016/0378-3782(92)90167-F. 1592005
[25]
Hadders-Algra, M. Two distinct forms of minor neurological dysfunction: perspectives emerging from a review of data of the Groningen Perinatal Project. Dev. Med. Child Neurol.?2002, 44, 561–571. 12206624
[26]
Martinez, M. Tissue levels of polyunsaturated fatty acids during early human development. J. Pediatr.?1992, 120, S129–138, doi:10.1016/S0022-3476(05)81247-8. 1532827
[27]
Diau, G.Y.; Hsieh, A.; Sarkadi-Nagy, E.; Wijendran, V.; Nathanielsz, P.; Brenna, J.T. The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system. B.M.C. Medicine?2005, 3, 11.
[28]
Lauritzen, L.; Hansen, H.S.; J?rgensen, M.H.; Michaelsen, K.F. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Progr. Lipid Res.?2001, 40, 1–94, doi:10.1016/S0163-7827(00)00017-5.
[29]
Percy, P.; Percy, A.; Vilbersson, G.; Mansson, J-E. Polyunsaturated fatty acid accretion in first- and second-trimester human fetal brain: lack of correlation with levels in paired placental samples. Biochem. Mol. Med.?1996, 59, 38–43, doi:10.1006/bmme.1996.0062. 8902192
[30]
Clandinin, M.T.; Chapell, J.E.; Leong, S.; Heim, T.; Swyer, P.R.; Chance, P.W. Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum. Dev.?1980, 4, 121–129, doi:10.1016/0378-3782(80)90015-8. 7408742
[31]
Martinez, M.; Mougan, I. Fatty acid composition of human brain phospholipids during normal development. J. Neurochem.?1998, 71, 2528–2533. 9832152
[32]
Green, P.; Yavin, E. Mechanisms of docosahexaenoic acid accretion in the fetal brain. J. Neurosci. Res.?1998, 52, 129–136, doi:10.1002/(SICI)1097-4547(19980415)52:2<129::AID-JNR1>3.0.CO;2-C. 9579403
[33]
Larque, E.; Demmelmair, H.; Koletzko, B. Perinatal supply and metabolism of long-chain polyunsaturated fatty acids: importance for the early development of the nervous system. Ann. N. Y. Acad. Sci.?2002, 967, 299–310. 12079857
[34]
Simmer, K.; Patole, S.K.; Rao, S.C. Longchain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst. Rev.?2008, 1 CD000376.
[35]
Uauy, R.; Hoffman, D.R.; Mena, P.; Llanos, A.; Birch, E.E. Term infant studies of DHA and ARA supplementation on neurodevelopment: results of randomized controlled trials. J. Pediatr.?2003, 143, S17–S25. 14597910
[36]
Hadders-Algra, M. The role of long-chain polyunsaturated fatty acids (LCPUFA) in growth and development. Adv. Exp. Med. Biol.?2005, 569, 80–94. 16137111
[37]
Carlson, S.E.; Ford, A.J.; Werkman, S.H.; Peeples, J.M.; Koo, W.K.K. Visual acuity and fatty acid status of term infants fed human milk and formulas with and without docosahexaeoate and arachidonate from egg yolk lecithin. Pediatr. Res.?1996, 39, 882–888, doi:10.1203/00006450-199605000-00024. 8726246
[38]
Teller, D.Y.; McDonald, M.A.; Preston, K.; Sebris, S.L.; Dobson, V. Assessment of visual acuity in infants and children: the acuity card procedure. Dev. Med. Child Neurol.?1986, 28, 779–789. 3817317
[39]
Auestad, N.; Montalto, B.; Hall, R.T.; Fitzgerald, K.M.; Wheeler, R.E.; Connor, W.E.; Neuringer, M.; Connor, S.L.; Taylor, J.A.; Hartmann, E.E. Visual acuity, erythrocyte fatty acid composition, and growth in term infants fed formulas with long chain polyunsaturated fatty acids for one year. Pediatr. Res.?1997, 341, 1–10.
[40]
Birch, E.E.; Hale, L.A. Criteria for monocular acuity deficit in infancy and early childhood. Invest. Ophthalmol. Vis. Sci.?1988, 29, 636–643. 3356518
[41]
Taylor, M.J.; McCulloch, D.L. Visual evoked potentials in infants and children. J. Clin. Neurophysiol.?1992, 9, 357–372, doi:10.1097/00004691-199207010-00004. 1517404
[42]
Auestad, N.; Halter, R.; Hall, R.T.; Blatter, M.; Bogle, M.L.; Burks, W.; Erickson, J.R.; Fitzgerald, K.M.; Dobson, V.; Innis, S.M.; Singer, L.T.; Montalto, M.B.; Jacobs, J.R.; Qiu, W.; Bornstein, M.H. Growth and development in term infants fed long-chain polyunsaturated fatty acids: a double-masked randomized, parallel, prospective, multivariate study. Pediatrics?2001, 108, 372–381. 11483802
[43]
Agostoni, C.; Trojan, T.; Bellu, R.; Riva, E.; Giovannini, M. Neurodevelopmental quotient of healhty term infants at 4 months and feeding practice: the role of long-chain polyunsaturated fatty acids. Pediatr. Res.?1995, 38, 262–266, doi:10.1203/00006450-199508000-00021. 7478826
[44]
Brunet, O.; Lézine, I. Le Developpement Psychologique De La Premiere Enfance, 2nd ed.; Presse Universitaire de France: Paris, France, 1966.
[45]
Bouwstra, H.; Dijck-Brouwer, D.A.J.; Wildeman, J.A.L.; Tjoonk, H.M.; Van der Heide, J.C.; Boersma, E.R.; Muskiet, F.A.J.; Hadders-Algra, M. Long-chain polyunsaturated fatty acids have a positive effect on the quality of general movements of healthy term infants. Am. J. Clin. Nutr.?2003, 78, 313–318. 12885715
[46]
Hadders-Algra, M. General movements: a window for early identification of children at high risk of developmental disorders. J. Pediatr.?2004, 145, S12–S18. 15292882
[47]
Makrides, M.; Neumann, M.A.; Simmer, K.; Gibson, R.A. A critical appraisal of the role of dietary long-chain polyunsaturated fatty acids on neural indices of term infants: a randomized, controlled trial. Pediatrics?2000, 105, 32–38, doi:10.1542/peds.105.1.32. 10617701
[48]
Makrides, M.; Neumann, M.; Simmer, K.; Pater, J.; Gibson, R.A. Are long-chain polyunsaturated fatty acids essential nutrients in infancy? Lancet?1995, 345, 1463–1468. 7769900
[49]
Birch, E.E.; Hofman, D.R.; Uauy, R.; Birch, D.G.; Pastridge, C. Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatr. Res.?1998, 44, 201–209, doi:10.1203/00006450-199808000-00011. 9702915
[50]
Birch, E.E.; Casta?eda, Y.S.; Wheaton, D.H.; Birch, D.G.; Uauy, R.D.; Hoffman, D.R. Visual maturation of term infants fed long-chain polyunsaturated fatty acid-supplemented or control formula for 12 mo. Am. J. Clin. Nutr.?2005, 81, 871–879. 15817866
[51]
Birch, E.E.; Morale, S.E.; Jeffrey, B.G.; O'Connor, A.R.; Fawcett, S.L. Measurement of stereoacuity outcomes at ages 1 to 24 months: Randot Stereocards. J. AAPOS?2005, 9, 31–36, doi:10.1016/j.jaapos.2004.11.013. 15729278
[52]
ünay, B.; Sarici, ü.; Ulas, ü.H.; Akin, R.; Alpay, F.; G?k?ay, E. Nutritional effects on auditory brainstem maturation in healthy term infants. Arch. Dis. Child Fetal Neonatal Ed.?2004, 89, S177–S179, doi:10.1136/adc.2002.021014.
Birch, E.E.; Carlson, S.E.; Hoffman, D.R.; Fitzgerald-Gustafson, K.M.; Fu, V.L.; Drover, J.R.; Casta?eda, Y.S.; Minns, L.; Wheaton, D.K.; Mundy, D.; Marunycz, J.; Diersen-Schade, D.A. The DIAMOND (DHA Intake And Measurement Of Neural Development) Study: a double-masked, randomized controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid. Am. J. Clin. Nutr.?2010, 91, 848–859, doi:10.3945/ajcn.2009.28557. 20130095
[55]
Scott, D.T.; Janowsky, J.S.; Carroll, R.E.; Taylor, J.A.; Auestad, N.; Montalto, M.B. Formula supplementation with long-chain polyunsaturated fatty acids: are there developmental benefits? Pediatrics?1998, 102, E59. 9794989
[56]
Bayley, N. Bayley Scales of Infant Development, 2nd ed.; Psychological Corporation: San Antonio, TX, USA, 1993.
[57]
Fenson, L.; Marchman, V.A.; Thal, D.; Dale, P.; Reznick, S.; Bates, E. The MacArthur Communicative Development Inventories: User’s Guide and Technical Manual, 2nd ed.; Paul. H. Brookes Publishing Co.: Baltimore, MD, USA, 2007.
[58]
Fagan, J.F.; Singer, L.T. Advances in Infancy Research; Lipsitt, L.P., Ed.; Ablex: Norwood, NJ, USA, 1983; Volume 2, pp. 31–72.
[59]
Rothbart, M.K. Measurement of temperament in infancy. Child. Dev.?1981, 52, 569–578, doi:10.2307/1129176.
[60]
Willats, P.; Forsyth, J.S.; Dimodugno, M.K.; Varma, S.; Colvin, M. Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age. Lancet?1998, 352, 688–691, doi:10.1016/S0140-6736(97)11374-5. 9728984
[61]
Auestad, N.; Scott, D.T.; Janowsky, J.S.; Jacobsen, C.; Caroll, R.E.; Montalto, M.B.; Halter, R.; Qui, W.; Jacobs, J.R.; Connor, W.E.; Connor, S.L.; Taylor, J.A.; Neuringer, M.; Fitzgerald, K.M.; Hall, R.T. Visual, cognitive and language assessments at 39 months: a follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age. Pediatrics?2003, 112, 177–1183, doi:10.1542/peds.112.3.e177.
[62]
Beery, K.E. Administration, Scoring and Teaching Manual for the Beery-Buktenica Developmental Test of Visual-motor Integration with Supplemental Developmental Tests of Visual Perception and Motor Coordination; Modern Curriculum Press: Toronto, NJ, USA, 1997.
[63]
Terman, L.M.; Merrill, M.A. Stanford-Binet Intelligence Scale Form L-M, 3rd ed.; Houghton Mifflin: Chicago, IL, USA, 1973.
[64]
Bouwstra, H.; Dijck-Brouwer, D.A.J.; Boehm, G.; Boersma, E.R.; Muskiet, F.A.J.; Hadders-Algra, M. Long-chain polyunsaturated fatty acids and neurological developmental outcome at 18 months in healthy term infants. Acta Paediatr.?2005, 94, 26–32, doi:10.1080/08035250410020190. 15858956
[65]
Hempel, M.S. The Neurological Examination for Toddler-Age. PhD-thesis, University of Groningen, Groningen, The Netherlands, 1993.
[66]
Touwen, B.C.L. Examination of the Child with Minor Neurological Dysfunction, Clinics in Developmental Medicine No. 71; Mac Keith Press: London, UK, 1979.
[67]
Agostoni, C.; Trojan, S.; Bellu, R.; Riva, E.; Bruzzese, M.G.; Giovannini, M. Developmental quotient at 24 months and fatty acid composition of diet in early infancy: a follow-up study. Arch. Dis. Child.?1997, 76, 421–424, doi:10.1136/adc.76.5.421. 9196357
[68]
Lucas, A.; Stafford, M.; Morley, R; Abbott, R.; Stephenson, T.; MacFayden, U.; Elias-Jones, A.; Clements, H. Efficacy and safety of long-chain polyunsaturated fatty acid supplementation of infant-formula milk: a randomised trial. Lancet?1999, 354, 1948–1954. 10622297
[69]
Knobloch, H.; Passamanick, B.; Sherard, S. A developmental screening inventory for infants. Pediatrics?1966, 38, 1095–1108. 5954241
[70]
Singhal, A.; Morley, R.; Cole, T.J.; Kennedy, K.; Sonksen, P.; Isaacs, E.; Fewtrell, M.; Elias-Jones, A.; Stephenson, T.; Lucas, A. Infant nutrition and stereoacuity at age 4-6 y. Am. J. Clin. Nutr.?2007, 85, 152–159. 17209191
[71]
Sonksen, P.M.; Silver, J. The Sonksen-silver Visual Acuity System. Test System and Instruction Manual; Keeler: Windsor, UK, 1988.
[72]
Birch, E.E.; Garfield, S.; Hofman, D.R.; Uauy, R.; Birch, D.G. A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev. Med. Child Neurol.?2000, 42, 174–181, doi:10.1017/S0012162200000311. 10755457
[73]
Birch, E.E.; Garfield, S.; Casta?eda, Y.; Hughbanks-Wheaton, D.; Uauy, R.; Hoffman, D. Visual acuity and cognitive outcomes at 4 years of age in a double-blind, randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula. Early Hum. Dev.?2007, 83, 279–284, doi:10.1016/j.earlhumdev.2006.11.003. 17240089
[74]
Moke, P.S.; Turpin, A.H.; Beck, R.W.; Holmes, J.M.; Repka, M.X.; Birch, E.E.; Hertle, R.W.; Kraker, R.T.; Miller, J.M.; Johnson, C.A. Computerized method of visual acuity testing: adaptation of the Amblyopia Treatment Study visual acuity testing protocol for children. Am. J. Ophthalmol.?2001, 132, 903–909, doi:10.1016/S0002-9394(01)01256-9. 11730656
[75]
Wechsler, D. Wechsler Preschool and Primary Scale of Intelligence—Revised; Psychological Corporation: London, UK, 1989.