全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Research on a Large-Scale Text Clustering Algorithm based on Clustering Features
基于聚类特性的大规模文本聚类算法研究

Keywords: 信息处理,聚类特性,大规模文本聚类算法,计算机

Full-Text   Cite this paper   Add to My Lib

Abstract:

一、引言随着Internet的飞速发展,人们能从网上得到更多的信息,但过多的信息常常会导致信息迷失。将信息进行分类是帮助信息利用的有效方法,聚类则是文本类别划分时常用的技术,其特点是不需训练集即可从给定的文本集合中找到聚类划分。已有的聚类方法大多是针对小规模数据的,当计算资源和时间受到限制时,原有的大部分方法已不能满足要求,需要能够处理大规模数据的算法。标准k均值方法是比较基本也是很常用的一种聚类方法,其计算复杂度与模式数量成线性关系,这使其具有处理大规模数据的可能。k均值方法本质上是一种选代的方法,当数据不能一次全部读入内存时,则需和磁盘进行多次数据交换,并且这种交换相应于迭代次数要反复多次,这无疑需要花费大量的I/O时间。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133