Besides being important in the fermentation of foods and beverages, yeasts have shown numerous beneficial effects on human health. Among these, probiotic effects are the most well known health effects including prevention and treatment of intestinal diseases and immunomodulatory effects. Other beneficial functions of yeasts are improvement of bioavailability of minerals through the hydrolysis of phytate, folate biofortification and detoxification of mycotoxins due to surface binding to the yeast cell wall.
References
[1]
Qualified Presumption of Safety of Micro-organisms in Food and Feed of Micro-organisms in Food and Feed. The EFSA's 2nd Scientific Colloquium Report; European Food Safety Authority: Parma, Italy, 2005.
[2]
Jespersen, L. Occurrence and taxonomic characteristics of strains of Saccharomyces cerevisiae predominant in African indigenous fermented foods and beverages. FEMS Yeast Res.?2003, 3, 191–200.
[3]
Maugeri, F.; Hernalsteens, S. Screening of yeast strains for transfructosylating activity. J. Mol. Catal. B Enzym.?2007, 49, 43–49.
[4]
Psomas, E.I.; Fletouris, D.J.; Litopoulou-Tzanetaki, E.; Tzanetakis, N. Assimilation of cholesterol by yeast strains isolated from infant feces and Feta cheese. J. Dairy Sci.?2003, 86, 3416–3422.
[5]
Klimek, M.; Wang, S.; Ogunkanmi, A. Safety and efficacy of red yeast rice (Monascus purpureus) as an alternative therapy for hyperlipidemia. P. T.?2009, 34, 313–327.
[6]
Kogan, G.; Pajtinka, M.; Babincova, M.; Miadokova, E.; Rauko, P.; Slamenova, D.; Korolenko, T. A. Yeast cell wall polysaccharides as antioxidants and antimutagens: Can they fight cancer? Minireview. Neoplasma?2008, 55, 387–393.
[7]
Fleet, G.H.; Balia, R. Yeasts in Food and Beverages; Querol A.;, Fleet, G.H., Eds., Eds.; Springer-Verlag: Berlin, Heidelberg, Germany, 2006; Volume 2, pp. 381–398.
[8]
Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria. Food and Agriculture Organization of the United Nations and World Health Organization Expert Consultation Report; FAO/WHO: Geneva, Switzerland, 2001.
[9]
Psani, M.; Kotzekidou, P. Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World J. Microbiol. Biotechnol.?2006, 22, 1329–1336.
[10]
Kumura, H.; Tanoue, Y.; Tsukahara, M.; Tanaka, T.; Shimazaki, K. Screening of dairy yeast strains for probiotic applications. J. Dairy Sci.?2004, 87, 4050–4056.
[11]
Sazawal, S.; Hiremath, G.; Dhingra, U.; Malik, P.; Deb, S.; Black, R.E. Efficacy of probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomised, placebo-controlled trial. Lancet Infect. Dis.?2006, 6, 374–382.
[12]
van der Aa Kühle, A.; Jespersen, L. The taxonomic position of Saccharomyces boulardii as evaluated by sequence analysis of the D1/D2 domain of 26S rDNA, the ITS1-5.8S rDNA-ITS2 region and the mitochondrial cytochrome-c oxidase II gene. Syst. Appl. Microbiol.?2003, 26, 564–571, doi:10.1078/072320203770865873. 14666985
[13]
Hennequin, C.; Thierry, A.; Richard, G.F.; Lecointre, G.; Nguyen, H.V.; Gaillardin, C.; Dujon, B. Microsatellite typing as a new tool for identification of Saccharomyces cerevisiae strains. J. Clin. Microbiol.?2001, 39, 551–559.
[14]
Edwards-Ingram, L.; Gitsham, P.; Burton, N.; Warhurst, G.; Clarke, I.; Hoyle, D.; Oliver, S. G.; Stateva, L. Genotypic and physiological characterization of Saccharomyces boulardii, the probiotic strain of Saccharomyces cerevisiae. Appl. Environ. Microbiol.?2007, 73, 2458–2467.
[15]
Fietto, J.L.; Araujo, R.S.; Valadao, F.N.; Fietto, L.G.; Brandao, R.L.; Neves, M.J.; Gomes, F.C.; Nicoli, J.R.; Castro, I.M. Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii. Can. J. Microbiol.?2004, 50, 615–621.
[16]
Gedek, B.R. Adherence of Escherichia coli serogroup 0 157 and the Salmonella Typhimurium mutant DT 104 to the surface of Saccharomyces boulardii. Mycoses?1999, 42, 261–264.
[17]
Tasteyre, A.; Barc, M.C.; Karjalainen, T.; Bourlioux, P.; Collignon, A. Inhibition of in vitro cell adherence of Clostridium difficile by Saccharomyces boulardii. Microb. Pathog.?2002, 32, 219–225.
[18]
Lessard, M.; Dupuis, M.; Gagnon, N.; Nadeau, E.; Matte, J.J.; Goulet, J.; Fairbrother, J.M. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge. J. Anim Sci.?2009, 87, 922–934.
[19]
Wu, X.; Vallance, B.A.; Boyer, L.; Bergstrom, K.S.B.; Walker, J.; Madsen, K.; O'Kusky, J.R.; Buchan, A.M.; Jacobson, K. Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. Am. J. Physiol. Gastrointest. Liver Physiol.?2008, 294, G295–G306.
[20]
Herek, O.; Kara, I.G.; Kaleli, I. Effects of antibiotics and Saccharomyces boulardii on bacterial translocation in burn injury. Surg. Today?2004, 34, 256–260.
[21]
Czerucka, D.; Dahan, S.; Mograbi, B.; Rossi, B.; Rampal, P. Saccharomyces boulardii preserves the barrier function and modulates the signal transduction pathway induced in enteropathogenic Escherichia coli-infected T84 cells. Infect. Immun.?2000, 68, 5998–6004.
[22]
Mumy, K.L.; Chen, X.H.; Kelly, C.P.; McCormick, B.A. Saccharomyces boulardii interferes with Shigella pathogenesis by postinvasion signaling events. Am. J. Physiol. Gastrointest. Liver Physiol.?2008, 294, G599–G609.
[23]
Rodrigues, A.C.; Nardi, R.M.; Bambirra, E.A.; Vieira, E.C.; Nicoli, J.R. Effect of Saccharomyces boulardii against experimental oral infection with Salmonella typhimurium and Shigella flexneri in conventional and gnotobiotic mice. J. Appl. Bacteriol.?1996, 81, 251–256.
[24]
Castagliuolo, I.; LaMont, J.T.; Nikulasson, S.T.; Pothoulakis, C. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect. Immun.?1996, 64, 5225–5232.
[25]
Castagliuolo, I.; Riegler, M.F.; Valenick, L.; LaMont, J.T.; Pothoulakis, C. Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect. Immun.?1999, 67, 302–307.
[26]
Pothoulakis, C.; Kelly, C.P.; Joshi, M.A.; Gao, N.; O'Keane, C.J.; Castagliuolo, I.; LaMont, J.T. Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum. Gastroenterol.?1993, 104, 1108–1115.
[27]
Czerucka, D.; Roux, I.; Rampal, P. Saccharomyces boulardii inhibits secretagogue-mediated adenosine 3',5'-cyclic monophosphate induction in intestinal cells. Gastroenterol.?1994, 106, 65–72.
[28]
Czerucka, D.; Rampal, P. Effect of Saccharomyces boulardii on cAMP- and Ca2+ -dependent Cl- secretion in T84 cells. Dig. Dis. Sci.?1999, 44, 2359–2368.
[29]
Brand?o, R.L.; Castro, I.M.; Bambirra, E.A.; Amaral, S.C.; Fietto, L.G.; Tropia, M.J.; Neves, M.J.; Dos Santos, R.G.; Gomes, N.C.; Nicoli, J.R. Intracellular signal triggered by cholera toxin in Saccharomyces boulardii and Saccharomyces cerevisiae. Appl. Environ. Microbiol.?1998, 64, 564–568.
[30]
Buts, J.P.; Dekeyser, N.; Stilmant, C.; Delem, E.; Smets, F.; Sokal, E. Saccharomyces boulardii produces in rat small intestine a novel protein phosphatase that inhibits Escherichia coli endotoxin by dephosphorylation. Pediatr. Res.?2006, 60, 24–29.
[31]
Dahan, S.; Dalmasso, G.; Imbert, V.; Peyron, J.F.; Rampal, P.; Czerucka, D. Saccharomyces boulardii interferes with enterohemorrhagic Escherichia coli-induced signaling pathways in T84 cells. Infect. Immun.?2003, 71, 766–773.
Chen, X.; Kokkotou, E.G.; Mustafa, N.; Bhaskar, K.R.; Sougioultzis, S.; O'Brien, M.; Pothoulakis, C.; Kelly, C.P. Saccharomyces boulardii inhibits ERK1/2 mitogen-activated protein kinase activation both in vitro and in vivo and protects against Clostridium difficile toxin A-induced enteritis. J. Biol. Chem.?2006, 281, 24449–24454.
van der Aa Kühle, A.; Skovgaard, K.; Jespersen, L. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains. Int. J. Food Microbiol.?2005, 101, 29–39, doi:10.1016/j.ijfoodmicro.2004.10.039. 15878404
[36]
Klingberg, T.D.; Lesnik, U.; Arneborg, N.; Raspor, P.; Jespersen, L. Comparison of Saccharomyces cerevisiae strains of clinical and nonclinical origin by molecular typing and determination of putative virulence traits. FEMS Yeast Res.?2008, 8, 631–640.
[37]
Lee, S.K.; Kim, H.J.; Chi, S.G.; Jang, J.Y.; Nam, K.D.; Kim, N.H.; Joo, K.R.; Dong, S.H.; Kim, B.H.; Chang, Y.W.; Lee, J.I.; Chang, R. Saccharomyces boulardii activates expression of peroxisome proliferator-activated receptor-gamma in HT-29 cells. Korean J. Gastroenterol.?2005, 45, 328–334.
[38]
Su, C.G.; Wen, X.; Bailey, S.T.; Jiang, W.; Rangwala, S.M.; Keilbaugh, S.A.; Flanigan, A.; Murthy, S.; Lazar, M.A.; Wu, G.D. A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J. Clin. Invest.?1999, 104, 383–389.
[39]
Dalmasso, G.; Cottrez, F.; Imbert, V.; Lagadec, P.; Peyron, J.F.; Rampal, P.; Czerucka, D.; Groux, H.; Foussat, A.; Brun, V. Saccharomyces boulardii inhibits inflammatory bowel disease by trapping T cells in mesenteric lymph nodes. Gastroenterol.?2006, 131, 1812–1825.
[40]
Dijkstra, G.; Moshage, H.; van Dullemen, H.M.; de Jager-Krikken, A.; Tiebosch, A.T.; Kleibeuker, J.H.; Jansen, P.L.; van, G.H. Expression of nitric oxide synthases and formation of nitrotyrosine and reactive oxygen species in inflammatory bowel disease. J. Pathol.?1998, 186, 416–421.
[41]
Girard, P.; Pansart, Y.; Gillardin, J.M. Inducible nitric oxide synthase involvement in the mechanism of action of Saccharomyces boulardii in castor oil-induced diarrhoea in rats. Nitric. Oxide.?2005, 13, 163–169.
[42]
Caetano, J.A.; Parames, M.T.; Babo, M.J.; Santos, A.; Ferreira, A.B.; Freitas, A.A.; Coelho, M.R.; Mateus, A.M. Immunopharmacological effects of Saccharomyces boulardii in healthy human volunteers. Int. J. Immunopharmacol.?1986, 8, 245–259.
[43]
Buts, J.P.; Bernasconi, P.; Vaerman, J.P.; Dive, C. Stimulation of secretory IgA and secretory component of immunoglobulins in small intestine of rats treated with Saccharomyces boulardii. Dig. Dis. Sci.?1990, 35, 251–256.
[44]
Qamar, A.; Aboudola, S.; Warny, M.; Michetti, P.; Pothoulakis, C.; LaMont, J.T.; Kelly, C.P. Saccharomyces boulardii stimulates intestinal immunoglobulin A immune response to Clostridium difficile toxin A in mice. Infect. Immun.?2001, 69, 2762–2765.
[45]
Rodrigues, A.C.; Cara, D.C.; Fretez, S.H.; Cunha, F.Q.; Vieira, E.C.; Nicoli, J.R.; Vieira, L.Q. Saccharomyces boulardii stimulates sIgA production and the phagocytic system of gnotobiotic mice. J. Appl. Microbiol.?2000, 89, 404–414.
[46]
Buts, J.P.; Bernasconi, P.; Van Craynest, M.P.; Maldague, P.; De, M.R. Response of human and rat small intestinal mucosa to oral administration of Saccharomyces boulardii. Pediatr. Res.?1986, 20, 192–196.
[47]
Jahn, H.U.; Ullrich, R.; Schneider, T.; Liehr, R.M.; Schieferdecker, H.L.; Holst, H.; Zeitz, M. Immunological and trophical effects of Saccharomyces boulardii on the small intestine in healthy human volunteers. Digestion?1996, 57, 95–104.
Buts, J.P.; De, K.N.; De, R.L. Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines. Pediatr. Res.?1994, 36, 522–527.
[50]
Bowling, T.E.; Raimundo, A.H.; Grimble, G.K.; Silk, D.B. Reversal by short-chain fatty acids of colonic fluid secretion induced by enteral feeding. Lancet?1993, 342, 1266–1268.
[51]
Schneider, S.M.; Le Gall, P.; Girard-Pipau, E.; Piche, T.; Pompei, A.; Nano, J.L.; Hebuterne, X.; Rampal, P. Total artificial nutrition is associated with major changes in the fecal flora. Eur. J. Nutr.?2000, 39, 248–255.
[52]
Schneider, S.M.; Girard-Pipau, F.; Filippi, J.; Hebuterne, X.; Moyse, D.; Hinojosa, G.C.; Pompei, A.; Rampal, P. Effects of Saccharomyces boulardii on fecal short-chain fatty acids and microflora in patients on long-term total enteral nutrition. World J. Gastroenterol.?2005, 11, 6165–6169.
[53]
Buts, J.P.; De, K.N.; Stilmant, C.; Sokal, E.; Marandi, S. Saccharomyces boulardii enhances N-terminal peptide hydrolysis in suckling rat small intestine by endoluminal release of a zinc-binding metalloprotease. Pediatr. Res.?2002, 51, 528–534.
[54]
De Llanos, R.; Querol, A.; Peman, J.; Gobernado, M.; Fernandez-Espinar, M.T. Food and probiotic strains from the Saccharomyces cerevisiae species as a possible origin of human systemic infections. Int. J. Food Microbiol.?2006, 110, 286–290.
[55]
Hennequin, C.; Kauffmann-Lacroix, C.; Jobert, A.; Viard, J.P.; Ricour, C.; Jacquemin, J.L.; Berche, P. Possible role of catheters in Saccharomyces boulardii fungemia. Eur. J. Clin. Microbiol. Infect. Dis.?2000, 19, 16–20.
[56]
Lherm, T.; Monet, C.; Nougiere, B.; Soulier, M.; Larbi, D.; Le Gall, C.; Caen, D.; Malbrunot, C. Seven cases of fungemia with Saccharomyces boulardii in critically ill patients. Intensive Care Med.?2002, 28, 797–801.
[57]
Katz, J.A. Probiotics for the prevention of antibiotic-associated diarrhea and Clostridium difficile diarrhea. J. Clin. Gastroenterol.?2006, 40, 249–255.
[58]
McFarland, L.V. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am. J. Gastroenterol.?2006, 101, 812–822.
[59]
Rohde, C.L.; Bartolini, V.; Jones, N. The use of probiotics in the prevention and treatment of antibiotic-associated diarrhea with special interest in Clostridium difficile-associated diarrhea. Nutr. Clin. Pract.?2009, 24, 33–40.
Asha, N.J.; Tompkins, D.; Wilcox, M.H. Comparative analysis of prevalence, risk factors, and molecular epidemiology of antibiotic-associated diarrhea due to Clostridium difficile, Clostridium perfringens, and Staphylococcus aureus. J. Clin. Microbiol.?2006, 44, 2785–2791. 16891493
[62]
Kotowska, M.; Albrecht, P.; Szajewska, H. Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea in children: a randomized double-blind placebo-controlled trial. Aliment. Pharmacol. Ther.?2005, 21, 583–590.
[63]
Surawicz, C.M.; McFarland, L.V.; Greenberg, R.N.; Rubin, M.; Fekety, R.; Mulligan, M. E.; Garcia, R. J.; Brandmarker, S.; Bowen, K.; Borjal, D.; Elmer, G. W. The search for a better treatment for recurrent Clostridium difficile disease: Use of high-dose vancomycin combined with Saccharomyces boulardii. Clin. Infect. Dis.?2000, 31, 1012–1017.
[64]
Sanders, J.W.; Tribble, D.R. Diarrhea in the returned traveler. Curr. Gastroenterol. Rep.?2001, 3, 304–314.
[65]
McFarland, L.V. Meta-analysis of probiotics for the prevention of traveler's diarrhea. Travel. Med. Infect. Dis.?2007, 5, 97–105.
[66]
Szajewska, H.; Skorka, A.; Dylag, M. Meta-analysis: Saccharomyces boulardii for treating acute diarrhoea in children. Aliment. Pharmacol. Ther.?2007, 25, 257–264.
[67]
Szajewska, H.; Ruszczynski, M.; Radzikowski, A. Probiotics in the prevention of antibiotic-associated diarrhea in children: a meta-analysis of randomized controlled trials. J. Pediatr.?2006, 149, 367–372.
[68]
Bleichner, G.; Blehaut, H.; Mentec, H.; Moyse, D. Saccharomyces boulardii prevents diarrhea in critically ill tube-fed patients - A multicenter, randomized, double-blind placebo-controlled trial. Intensive Care Med.?1997, 23, 517–523, doi:10.1007/s001340050367. 9201523
[69]
James, J.S. Diarrhea, and the experimental treatment Saccharomyces boulardii. AIDS Treat. News?1995, 1–4.
[70]
Maupas, J.; Champemont, P.; Delforge, M. Efficacy of Saccharomyces boulardii in the treatment of diarrhea in AIDS. Ann. Med. Interne (Paris)?1991, 142, 64–65. 2048880
[71]
Maupas, J.; Champemont, P.; Delforge, M. Treatment of irritable bowel syndrome with Saccharomyces boulardii: A double-blind, placebo-controlled study. Med. Chir. Dig.?1983, 12, 77–79.
[72]
Plein, K.; Hotz, J. Therapeutic effects of Saccharomyces boulardii on mild residual symptoms in a stable phase of Crohns-disease with special respect to chronic diarrhea - a pilot-study. Z. Gastroenterol.?1993, 31, 129–134.
[73]
Guslandi, M.; Mezzi, G.; Sorghi, M.; Testoni, P.A. Saccharomyces boulardii in maintenance treatment of Crohn's disease. Dig. Dis. Sci.?2000, 45, 1462–1464.
[74]
Guslandi, M.; Giollo, P.; Testoni, P.A. A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur. J. Gastroenterol. Hepatol.?2003, 15, 697–698.
[75]
Vilela, E.G.; Ferrari, M.D.D.; Torres, H.O.D.; Pinto, A.G.; Aguirre, A.C.C.; Martins, F.P.; Goulart, E.M.A.; Da Cunha, A.S. Influence of Saccharomyces boulardii on the intestinal permeability of patients with Crohn's disease in remission. Scand. J. Gastroenterol.?2008, 43, 842–848.
[76]
Lopez, H.W.; Leenhardt, F.; Coudray, C.; Remesy, C. Minerals and phytic acid interactions: is it a real problem for human nutrition? Int. J. Food Sci. Technol.?2002, 37, 727–739, doi:10.1046/j.1365-2621.2002.00618.x.
[77]
Maga, J.A. Phytate - Its Chemistry, Occurrence, Food Interactions, Nutritional Significance, and Methods of Analy. J. Agric. Food Chem.?1982, 30, 1–9.
[78]
Vohra, A.; Satyanarayana, T. Phytases: Microbial sources, production, purification, and potential biotechnological application. Crit. Rev. Biotechnol.?2003, 23, 29–60.
[79]
Reddy, N.R.; Pierson, M.D. Reduction in antinutritional and toxic components in plant foods (A) by fermentation. Food Res. Int.?1994, 27, 281–290.
[80]
Vucenik, I.; Shamsuddin, A.M. Cancer inhibition by inositol hexaphosphate (IP6) and inositol: From laboratory to clinic. J. Nutr.?2003, 133, 3778S–3784S.
[81]
Vucenik, I.; Shamsuddin, A.M. Protection against cancer by dietary IP6 and inositol. Nutr. Cancer?2006, 55, 109–125.
[82]
Konietzny, U.; Greiner, R. Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int. J. Food Sci. Technol.?2002, 37, 791–812.
[83]
Türk, M.; Carlsson, N.G.; Sandberg, A.S. eduction in the levels of phytate during wholemeal bread making; Effect of yeast and wheat phytases. J. Cereal Sci.?1996, 23, 257–264.
[84]
Sandberg, A.S. The effect of food processing on phytate hydrolysis and availability of iron and zinc. Adv. Exp. Med. Biol.?1991, 289, 499–508.
[85]
Navert, B.; Sandstrom, B.; Cederblad, A. Reduction of the phytate content of bran by leavening in bread and its effect on zinc absorption in man. Br. J. Nutr.?1985, 53, 47–53.
[86]
Sandberg, A.S.; Hasselblad, C.; Hasselblad, K.; Hulten, L. The effect of wheat bran on the absorption of minerals in the small intestine. Br. J. Nutr.?1982, 48, 185–191.
[87]
Haefner, S.; Knietsch, A.; Scholten, E.; Braun, J.; Lohscheidt, M.; Zelder, O. Biotechnological production and applications of phytases. Appl. Microbiol. Biotechnol.?2005, 68, 588–597.
[88]
Quan, C.S.; Fan, S.D.; Zhang, L.H.; Wang, Y.J.; Ohta, Y. Purification and properties of a phytase from Candida krusei WZ-001. J. Biosci. Bioeng.?2002, 94, 419–425.
[89]
Segueilha, L.; Lambrechts, C.; Boze, H.; Moulin, G.; Galzy, P. Purification and properties of the phytase from Schwanniomyces castellii. J. Ferment. Bioeng.?1992, 74, 7–11.
[90]
Ragon, M.; Aumelas, A.; Chemardin, P.; Galvez, S.; Moulin, G.; Boze, H. Complete hydrolysis of myo-inositol hexakisphosphate by a novel phytase from Debaryomyces castellii CBS 2923. Appl. Microbiol. Biotechnol.?2008, 78, 47–53.
[91]
Sano, K.; Fukuhara, H.; Nakamura, Y. Phytase of the yeast Arxula adeninivorans. Biotechnol. Lett.?1999, 21, 33–38.
[92]
Olstorpe, M.; Schnurer, J.; Passoth, V. Screening of yeast strains for phytase activity. FEMS Yeast Res.?2009, 9, 478–488.
[93]
Vohra, A.; Satyanarayana, T. Phytase production by the yeast, Pichia anomala. Biotechnol. Lett.?2001, 23, 551–554.
[94]
Nakamura, Y.; Fukuhara, H.; Sano, K. Secreted phytase activities of yeasts. Biosci. Biotechnol. Biochem.?2000, 64, 841–844.
[95]
van Staden, J.; den Haan, R.; van Zyl, W. H.; Botha, A.; Viljoen-Bloom, M. Phytase activity in Cryptococcus laurentii ABO 510. FEMS Yeast Res.?2007, 7, 442–448.
[96]
Bindu, S.; Somashekar, D.; Joseph, R. A comparative study on permeabilization treatments for in situ determination of phytase of Rhodotorula gracilis. Lett. Appl. Microbiol.?1998, 27, 336–340.
[97]
Lim, M.H.; Lee, O.H.; Chin, J.E.; Ko, H.M.; Kim, I.C.; Lee, H.B.; Im, S.Y.; Bai, S. Simultaneous degradation of phytic acid and starch by an industrial strain of Saccharomyces cerevisiae producing phytase and alpha-amylase. Biotechnol. Lett.?2008, 30, 2125–2130.
[98]
Veide, J.; Andlid, T. Improved extracellular phytase activity in Saccharomyces cerevisiae by modifications in the PHO system. Int. J. Food Microbiol.?2006, 108, 60–67.
[99]
Andlid, T.A.; Veide, J.; Sandberg, A.S. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae. Int. J. Food Microbiol.?2004, 97, 157–169.
[100]
Türk, M.; Sandberg, A. S.; Carlsson, N. G.; Andlid, T. Inositol hexaphosphate hydrolysis by Baker's yeast. Capacity, kinetics, and degradation products. J. Agric. Food Chem.?2000, 48, 100–104. 10637059
[101]
Harland, B. F.; Frolich, W. Effects of phytase from 3 yeasts on phytate reduction in Norwegian whole wheat-flour. Cereal Chem.?1989, 66, 357–358.
[102]
Türk, M.; Sandberg, A.S. Phytate Degradation During Breadmaking-Effect of Phytase Addition. J. Cereal Sci.?1992, 15, 281–294.
[103]
Haraldsson, A.K.; Veide, J.; Andlid, T.; Alminger, M.L.; Sandberg, A.S. Degradation of phytate by high-phytase Saccharomyces cerevisiae strains during simulated gastrointestinal digestion. J. Agric. Food Chem.?2005, 53, 5438–5444.
[104]
Reale, A.; Mannina, L.; Tremonte, P.; Sobolev, A.P.; Succi, M.; Sorrentino, E.; Coppola, R. Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a P-31 NMR study. J. Agric. Food Chem.?2004, 52, 6300–6305.
[105]
Lopez, H.W.; Duclos, V.; Coudray, C.; Krespine, V.; Feillet-Coudray, C.; Messager, A.; Demigne, C.; Remesy, C. Making bread with sourdough improves mineral bioavailability from reconstituted whole wheat flour in rats. Nutrition?2003, 19, 524–530.
[106]
Chaoui, A.; Faid, M.; Belhcen, R. Effect of natural starters used for sourdough bread in Morocco on phytate biodegradation. East Mediterr. Health J.?2003, 9, 141–147.
[107]
Antai, S.P.; Nkwelang, G. Reduction of some toxicants in Icacina mannii by fermentation with Saccharomyces cerevisiae. Plant Foods Hum. Nutr.?1999, 53, 103–111.
[108]
Bilgicli, N.; Elgun, A.; Turker, S. Effects of various phytase sources on phytic acid content, mineral extractability and protein digestibility of tarhana. Food Chem.?2006, 98, 329–337.
[109]
Gregory, J.F. Chemical and nutritional aspects of folate research: analytical procedures, methods of folate synthesis, stability, and bioavailability of dietary folates. Adv. Food Nutr. Res.?1989, 33, 1–101.
[110]
Hanson, A.D.; Roje, S. One-carbon metabolism in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.?2001, 52, 119–137.
[111]
Scott, J.; Rebeille, F.; Fletcher, J. Folic acid and folates: the feasibility for nutritional enhancement in plant foods. J. Sci. Food Agric.?2000, 80, 795–824.
[112]
Bailey, L.B.; Rampersaud, G.C.; Kauwell, G.P. A. Folic acid supplements and fortification affect the risk for neural tube defects, vascular disease and cancer: Evolving science. J. Nutr.?2003, 133, 1961S–1968S.
[113]
Cordero, J.F.; Do, A.; Berry, R.J. Review of interventions for the prevention and control of folate and vitamin B-12 deficiencies. Food Nutr. Bull.?2008, 29, S188–S195.
[114]
Ward, M. Homocysteine, folate, and cardiovascular disease. Int. J. Vitam. Nutr. Res.?2001, 71, 173–178.
[115]
Duthie, S.J. Folic acid deficiency and cancer: mechanisms of DNA instability. Br. Med. Bull.?1999, 55, 578–592.
[116]
Wang, H.X. Vitamin B-12, folate, and Alzheimer's disease. Drug Dev. Res.?2002, 56, 111–122.
[117]
de Bree, A.; van, D.M.; Brouwer, I.A.; van het Hof, K.H.; Steegers-Theunissen, R.P. Folate intake in Europe: recommended, actual and desired intake. Eur. J. Clin. Nutr.?1997, 51, 643–660.
[118]
Letsky, E.A. Erythropoiesis in Pregnancy. J. Perinat. Med.?1995, 23, 39–45.
[119]
Patring, J.D.; Jastrebova, J.A.; Hjortmo, S.B.; Andlid, T.A.; Jagerstad, I.M. Development of a simplified method for the determination of folates in baker's yeast by HPLC with ultraviolet and fluorescence detection. J. Agric. Food Chem.?2005, 53, 2406–2411.
[120]
Hjortmo, S.; Patring, J.; Andlid, T. Growth rate and medium composition strongly affect folate content in Saccharomyces cerevisiae. Int. J. Food Microbiol.?2008, 123, 93–100.
[121]
Hjortmo, S.; Patring, J.; Jastrebova, J.; Andlid, T. Inherent biodiversity of folate content and composition in yeasts. Trends Food Sci. Technol.?2005, 16, 311–316.
[122]
Hjortmo, S.; Patring, J.; Jastrebova, J.; Andlid, T. Biofortification of folates in white wheat bread by selection of yeast strain and process. Int. J. Food Microbiol.?2008, 127, 32–36.
[123]
Kariluoto, S.; Vahteristo, L.; Salovaara, H.; Katina, K.; Liukkonen, K.H.; Piironen, V. Effect of baking method and fermentation on folate content of rye and wheat breads. Cereal Chem.?2004, 81, 134–139.
[124]
Osseyi, E.S.; Wehling, R.L.; Albrecht, J.A. HPLC determination of stability and distribution of added folic acid and some endogenous folates during breadmaking. Cereal Chem.?2001, 78, 375–378.
[125]
J?gerstad, M.; Piironen, V.; Walker, C.; Ros, G.; Carnovale, E.; Holasova, M.; Nau, H. Increasing natural-food folates through bioprocessing and biotechnology. Trends Food Sci. Technol.?2005, 16, 298–306.
[126]
Kariluoto, S.; Aittamaa, M.; Korhola, M.; Salovaara, H.; Vahteristo, L.; Piironen, V. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs. Int. J. Food Microbiol.?2006, 106, 137–143.
[127]
Zubillaga, M.; Weill, R.; Postaire, E.; Goldman, C.; Caro, R.; Boccio, J. Effect of probiotics and functional foods and their use in different diseases. Nutr. Res.?2001, 21, 569–579.
[128]
Witthuhn, R.C.; Schoeman, T.; Britz, T.J. Characterisation of the microbial population at different stages of Kefir production and Kefir grain mass cultivation. Int. Dairy J.?2005, 15, 383–389.
[129]
Patring, J.D.M.; Hjortmo, S.B.; Jastrebova, J.A.; Svensson, U.K.; Andlid, T.A.; J?gerstad, I.M. Characterization and quantification of folates produced by yeast strains isolated from kefir granules. Eur. Food Res. Technol.?2006, 223, 633–637.
[130]
Hjortmo, S.B.; Hellstrom, A.M.; Andlid, T.A. Production of folates by yeasts in Tanzanian fermented togwa. FEMS Yeast Res.?2008, 8, 781–787.
[131]
Sweeney, M.J.; Dobson, A.D. Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int. J. Food Microbiol.?1998, 43, 141–158.
[132]
Bhat, R.V. Mould deterioration of agricultural commodities during transit: problems faced by developing countries. Int. J. Food Microbiol.?1988, 7, 219–225.
[133]
Schatzmayr, G.; Zehner, F.; Taubel, M.; Schatzmayr, D.; Klimitsch, A.; Loibner, A.P.; Binder, E. M. Microbiologicals for deactivating mycotoxins. Mol. Nutr. Food Res.?2006, 50, 543–551.
[134]
Galvano, F.; Piva, A.; Ritieni, A.; Galvano, G. Dietary strategies to counteract the effects of mycotoxins: a review. J. Food Prot.?2001, 64, 120–131.
[135]
Kabak, B.; Dobson, A.D.; Var, I. Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit Rev. Food Sci. Nutr.?2006, 46, 593–619.
[136]
Shephard, G.S. Impact of mycotoxins on human health in developing countries. Food Addit. Contam.?2008, 25, 146–151.
[137]
Wu, Q.; Jezkova, A.; Yuan, Z.; Pavlikova, L.; Dohnal, V.; Kuca, K. Biological degradation of aflatoxins. Drug Metab. Rev.?2009, 41, 1–7.
[138]
Moss, M.O.; Long, M.T. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Addit. Contam.?2002, 19, 387–399.
[139]
B?swald, C.; Engelhardt, G.; Vogel, H.; Wallnofer, P.R. Metabolism of the Fusarium mycotoxins zearalenone and deoxynivalenol by yeast strains of technological relevance. Nat. Toxins.?1995, 3, 138–144.
[140]
Scott, P.M.; Kanhere, S.R.; Lawrence, G.A.; Daley, E.F.; Farber, J.M. Fermentation of wort containing added ochratoxin A and fumonisins B1 and B2. Food Addit. Contam.?1995, 12, 31–40.
[141]
Garda, J.; Macedo, R.M.; Faria, R.; Bernd, L.; Dors, G.C.; Badiale-Furlong, E. Alcoholic fermentation effects on malt spiked with trichothecenes. Food Control.?2005, 16, 423–428.
[142]
Péteri, Z.; Teren, J.; Vagvolgyi, C.; Varga, J. Ochratoxin degradation and adsorption caused by astaxanthin-producing yeasts. Food Microbiol.?2007, 24, 205–210.
[143]
Shetty, P.H.; Jespersen, L. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci. Technol.?2006, 17, 48–55.
[144]
Girish, C.K.; Devegowda, C. Efficacy of glucomannan-containing yeast product (Mycosorb (R)) and hydrated sodium calcium aluminosilicate in preventing the individual and combined toxicity of aflatoxin and T-2 toxin in commercial broilers. Asian-australas. J. Anim. Sci.?2006, 19, 877–883.
[145]
Raju, M.V.L.N.; Devegowda, G. Esterified-glucomannan in broiler chicken diets-contaminated with aflatoxin, ochratoxin and T-2 toxin: Evaluation of its binding ability (in vitro) and efficacy as immunomodulator. Asian-australas. J. Anim. Sci.?2002, 15, 1051–1056.
[146]
Aravind, K.L.; Patil, V.S.; Devegowda, G.; Umakantha, B.; Ganpule, S.P. Efficacy of esterified glucomannan to counteract mycotoxicosis in naturally contaminated feed on performance and serum biochemical and hematological parameters in broilers. Poult. Sci.?2003, 82, 571–576.
[147]
Bejaoui, H.; Mathieu, F.; Taillandier, P.; Lebrihi, A. Ochratoxin A removal in synthetic and natural grape juices by selected oenological Saccharomyces strains. J. Appl. Microbiol.?2004, 97, 1038–1044.
[148]
Yiannikouris, A.; Francois, J.; Poughon, L.; Dussap, C.G.; Bertin, G.; Jeminet, G.; Jouany, J.P. Adsorption of Zearalenone by beta-D-glucans in the Saccharomyces cerevisiae cell wall. J. Food Prot.?2004, 67, 1195–1200.
[149]
Raju, M.V.; Devegowda, G. Influence of esterified-glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin. Br. Poult. Sci.?2000, 41, 640–650.
[150]
Sabater-Vilar, M.; Malekinejad, H.; Selman, M.H.; van der Doelen, M.A.; Fink-Gremmels, J. In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses. Mycopathologia?2007, 163, 81–90.
[151]
Baptista, A.S.; Horii, J.; Calori-Domingues, M.A.; da Gloria, E.M.; Salgado, J.M.; Vizioli, M.R. The capacity of manno-oligosaccharides, thermolysed yeast and active yeast to attenuate aflatoxicosis. World J. Microbiol. Biotechnol.?2004, 20, 475–481.
[152]
Madrigal-Santillán, E.; Madrigal-Bujaidar, E.; Márquez-Márquez, R.; Reyes, A. Antigenotoxic effect of Saccharomyces cerevisiae on the damage produced in mice fed with aflatoxin B1 contaminated corn. Food Chem. Toxicol.?2006, 44, 2058–2063.
[153]
Caridi, A.; Galvano, F.; Tafur, A.; Ritieni, A. In-vitro screening of Saccharomyces strains for ochratoxin A removal from liquid medium. Ann. Microbiol.?2006, 56, 135–137.
[154]
Caridi, A. New perspectives in safety and quality enhancement of wine through selection of yeasts based on the parietal adsorption activity. Int. J. Food Microbiol.?2007, 120, 167–172.
[155]
Shetty, P.H.; Hald, B.; Jespersen, L. Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. Int. J. Food Microbiol.?2007, 113, 41–46.