In the present work, the procedures for the creation of self-assembled DNA nanostructures in aqueous and non-aqueous media are described. DNA-Surfactant complex formation renders the DNA soluble in organic solvents offering an exciting way to bridge the transition of DNA origami materials electronics applications. The DNA retains its structural features, and these unique geometries provide an interesting candidate for future electronics and nanofabrication applications with potential for new properties. The DNA architectures were first assembled under aqueous conditions, and then characterized in solution (using circular dichroism (CD) spectroscopy) and on the surface (using atomic force microscopy (AFM)). Following aqueous assembly, the DNA nanostructures were transitioned to a non-aqueous environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical structure and thermal stability in non-aqueous conditions were confirmed via CD spectroscopy. The formation and characterization of these higher order DNA-surfactant complexes is described in this paper.
References
[1]
Galatsis, K.; Wang, K.L.; Ozkan, M.; Ozkan, C.S.; Huang, Y.; Chang, J.P.; Monbouquette, H.G.; Chen, Y.; Nealey, P.; Botros, Y. Patterning and templating for nanoelectronics. Adv. Mater. 2010, 22, 769–778.
[2]
Noy, A. Bionanoelectronics. Adv. Mater. 2011, 23, 807–820, doi:10.1002/adma.201003751.
[3]
Sacca, B.; Niemeyer, C.M. DNA origami: The art of folding DNA. Angew. Chem. Int. Ed. 2012, 51, 58–66, doi:10.1002/anie.201105846.
[4]
Seeman, N.C. Nanomaterials based on DNA. Annu. Rev. Biochem. 2010, 79, 65–87, doi:10.1146/annurev-biochem-060308-102244.
[5]
Andersen, E.S.; Dong, M.; Nielsen, M.M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M.M.; Sander, B.; Stark, H.; Oliveira, C.L.P.; et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 2009, 459, 73–76.
[6]
Douglas, S.M.; Dietz, H.; Liedl, T.; Hogberg, B.; Graf, F.; Shih, W.M. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 2009, 459, 414–418.
[7]
Ke, Y.; Douglas, S.M.; Liu, M.; Sharma, J.; Cheng, A.; Leung, A.; Liu, Y.; Shih, W.M.; Yan, H. Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 2009, 131, 15903–15908.
[8]
Ke, Y.; Sharma, J.; Liu, M.; Jahn, K.; Liu, Y.; Yan, H. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett. 2009, 9, 2445–2447.
[9]
Kuzuya, A.; Komiyama, M. Design and construction of a box-shaped 3D-DNA origami. Chem. Commun. 2009, 28, 4182–4184, doi:10.1039/b907800b.
[10]
Kuzuya, A.; Komiyama, M. DNA origami: Fold, stick, and beyond. Nanoscale 2010, 2, 310–322, doi:10.1039/b9nr00246d.
[11]
Rothemund, P.W. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302, doi:10.1038/nature04586.
[12]
Tang, H.; Chen, L.; Xing, C.; Guo, Y.-G.; Wang, S. DNA-templated synthesis of cationic poly(3,4-ethylenedioxythiophene) derivative for supercapacitor electrodes. Macromol. Rapid Commun. 2010, 31, 1892–1896, doi:10.1002/marc.201000318.
[13]
Lin, Y.; Tao, Y.; Ren, J.; Pu, F.; Qu, X. Highly sensitive and selective detection of thiol-containing biomolecules using DNA-templated silver deposition. Biosens. Bioelectron. 2011, 28, 339–343, doi:10.1016/j.bios.2011.07.040.
[14]
Shukla, S.; Sastry, M. Probing differential Ag+-nucleobase interactions with isothermal titration calorimetry (ITC): Towards patterned DNA metallization. Nanoscale 2009, 1, 122–127, doi:10.1039/b9nr00004f.
Kim, H.J.; Roh, Y.; Hong, B. Selective formation of a latticed nanostructure with the precise alignment of DNA-templated gold nanowires. Langmuir 2010, 26, 18315–18319, doi:10.1021/la101086h.
[17]
Heckman, E.M.; Aga, R.S.; Rossbach, A.T.; Telek, B.A.; Bartsch, C.M.; Grote, J.G. DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators. Appl. Phys. Lett. 2011, 98, 103304:1–103304:3.
[18]
Popescu, R.; Moldoveanu, M.; Rau, I. Biopolymer thin films for photonics applications. Key Eng. Mater. 2009, 415, 33–36, doi:10.4028/www.scientific.net/KEM.415.33.
[19]
Heckman, E.; Bartsch, C.; Yaney, P.; Subramanyam, G.; Ouchen, F.; Grote, J.G. DNA-Surfactant Thin-Film Processing and Characterization. In Materials Science of DNA; CRC Press: Boca Raton, FL, USA, 2011; pp. 179–230.
[20]
Gao, L.; Ma, N. DNA-templated semiconductor nanocrystal growth for controlled DNA packing and gene delivery. ACS Nano 2012, 6, 689–695.
[21]
Zang, D.Y.; Grote, J. DNA-based nanoparticle composite materials for EMI shielding. Proc. SPIE 2012.
[22]
Singh, T.B.; Sariciftci, N.S.; Grote, J.G. Bio-Organic Optoelectronic Devices Using DNA. In Organic Electronics; Meller, G., Grasser, T., Eds.; Springer: New York, NY, USA, 2010; Volume 223, pp. 189–212.
Kobayashi, N. Bioled with DNA/conducting polymer complex as active layer. Nonlinear Opt. Quantum Opt. 2011, 43, 233–251.
[25]
Sun, Q.; Chang, D.W.; Dai, L.; Grote, J.; Naik, R. Multilayer white polymer light-emitting diodes with deoxyribonucleic acid-cetyltrimetylammonium complex as a hole-transporting/electron-blocking layer. Appl. Phys. Lett. 2008, 92, 251108:1–251108:3.
Horowitz, G. Interfaces in Organic Field-Effect Transistors. In Organic Electronics; Meller, G., Grasser, T., Eds.; Springer: New York, NY, USA, 2010; Volume 223, pp. 113–153.
[28]
Finch, A.S.; Jacob, C.M.; Sumner, J.J. DNA architectures for templated material growth. Proc. SPIE 2011.
[29]
Hamada, S.; Murata, S. Substrate-assisted assembly of interconnected single-duplex DNA nanostructures. Angew. Chem. Int. Ed. 2009, 48, 6820–6823, doi:10.1002/anie.200902662.
[30]
Sun, X.; Hyeon Ko, S.; Zhang, C.; Ribbe, A.E.; Mao, C. Surface-mediated DNA self-assembly. J. Am. Chem. Soc. 2009, 131, 13248–13249, doi:10.1021/ja906475w.
[31]
Kypr, J.; Kejnovska, I.; Renciuk, D.; Vorlickova, M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009, 37, 1713–1725, doi:10.1093/nar/gkp026.
[32]
Tanaka, K.; Okahata, Y. A DNA-lipid complex in organic media and formation of an aligned cast film. J. Am. Chem. Soc. 1996, 118, 10679–10683, doi:10.1021/ja9617855.