全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2012 

All-Solid-State Textile Batteries Made from Nano-Emulsion Conducting Polymer Inks for Wearable Electronics

DOI: 10.3390/nano2030268

Keywords: polymer battery, all-solid-state textile battery, PEDOT, conducting polymer, nano-emulsion ink

Full-Text   Cite this paper   Add to My Lib

Abstract:

A rollable and all-solid-state textile lithium battery based on fabric matrix and polymer electrolyte that allows flexibility and fast-charging capability is reported. When immerged into poly(3,4-ethylenedioxythiophene) (PEDOT) nano-emulsion inks, an insulating fabric is converted into a conductive battery electrode for a fully solid state lithium battery with the highest specific energy capacity of 68 mAh/g. This is superior to most of the solid-state conducting polymer primary and/or secondary batteries reported. The bending radius of such a textile battery is less than 1.5 mm while lightening up an LED. This new material combination and inherent flexibility is well suited to provide an energy source for future wearable and woven electronics.

References

[1]  Shim, B.S.; Chen, W.; Doty, C.; Xu, C.; Kotov, N.A. Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett. 2008, 8, 4151–4157, doi:10.1021/nl801495p.
[2]  Hu, L.; Chen, W.; Xie, X.; Liu, N.; Yang, Y.; Wu, H.; Yao, Y.; Pasta, M.; Alshareef, H.N.; Cui, Y. Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 2011, 5, 8904–8913, doi:10.1021/nn203085j.
[3]  Yu, G.; Hu, L.; Vosgueritchian, M.; Wang, H.; Xie, X.; McDonough, J.R.; Cui, X.; Cui, Y.; Bao, Z. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 2011, 11, 2905–2911, doi:10.1021/nl2013828.
[4]  Hu, L.; Pasta, M.; Mantia, F.L.; Cui, L.; Jeong, S.; Deshazer, H.D.; Choi, J.W.; Han, S.M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714, doi:10.1021/nl903949m.
[5]  Poland, C.A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W.A.H.; Seaton, A.; Stone, V.; Brown, S.; MacNee, W.; Donaldson, K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3, 423–428, doi:10.1038/nnano.2008.111.
[6]  Nyholm, L.; Nystr?m, G.; Mihranyan, A.; Str?mme, M. Toward flexible polymer and paper-based energy storage device. Adv. Mater. 2011, 23, 3751–3769.
[7]  Razaq, A.; Nyholm, L.; Sj?din, M.; Str?mme, M.; Mihranyan, A. Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes. Adv. Energy Mater. 2012, 4, 445–454.
[8]  Novak, P.; Muller, K.; Santhanam, K.S.V.; Haas, O. Conducting polymers for battery applications. Chem. Rev. 1997, 97, 207–281.
[9]  Shirakawa, H.; Lious, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 578–580.
[10]  MacDiarmid, A.G. Synthetic metals: A novel role for organic polymers (Nobel lecture). Angew. Chem. Int. Ed. 2001, 40, 2581–2590, doi:10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2.
[11]  Li, C.; Peng, X.; Zhang, B.; Wang, B. An all-solid-state lithium/polyaniline rechargeable cell. J. Power Sources 1992, 39, 255–258, doi:10.1016/0378-7753(92)80145-2.
[12]  Novak, P.; Inganas, O.; Bjorklund, R. Cycling behaviour of the polypyrrole-polyethylene oxide composite electrode. J. Power Sources 1987, 21, 17–24, doi:10.1016/0378-7753(87)80073-3.
[13]  Yang, Y.; Lee, K.; Mielczarek, K.; Hu, W.; Zakhidov, A. Nanoimprint of dehydrated PEDOT:PSS for organic photovoltaics. Nanotechnology 2011, 22, 485301, doi:10.1088/0957-4484/22/48/485301.
[14]  Wang, C.; Zheng, W.; Yue, Z.; Too, C.O.; Wallace, G.G. Buckled, stretchable polypyrrole electrodes for battery applications. Adv. Mater. 2011, 23, 3580–3584, doi:10.1002/adma.201101067.
[15]  Wei, D.; Andrew, P.; Yang, H.; Jiang, J.; Ruan, W.; Han, D.; Niu, L.; Bower, C.; Ryhanen, T.; Rouvala, M.; Amaratunga, G.A.J.; Ivaska, A. Flexible solid state lithium batteries based on graphene inks. J. Mater. Chem. 2011, 21, 9762–9767.
[16]  Kil, E.H.; Ha, H.J.; Lee, S.Y. A facile approach to fabricate self-standing gel-polymer electrolytes for flexible lithium-ion batteries by exploitation of UV-cured trivalent/monovalent acrylate polymer matrices. Macromol. Chem. Phys. 2011, 212, 2217–2223, doi:10.1002/macp.201100248.
[17]  Nystrom, G.; Razaq, A.; Stromme, M.; Nyholm, L.; Mihranyan, A. Ultrafast all-polymer paper-based batteries. Nano Lett. 2009, 9, 3635–3639.
[18]  Arbizzani, C.; Mastragostino, M. Polybithiophene as positive electrode in solid-state polyethylene oxide—LiClO4 lithium rechargeable battery. Electrochim. Acta 1990, 35, 251–254, doi:10.1016/0013-4686(90)85066-V.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133