全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2012 

Mesoporous Silica Nanoparticles with Co-Condensed Gadolinium Chelates for Multimodal Imaging

DOI: 10.3390/nano2010001

Keywords: mesoporous silica nanoparticle, MRI contrast agent, Gd3+ contrast agent, multimodal imaging

Full-Text   Cite this paper   Add to My Lib

Abstract:

Several mesoporous silica nanoparticle (MSN) contrast agents have been synthesized using a co-condensation method to incorporate two different Gd 3+ complexes at very high loadings (15.5–28.8 wt %). These MSN contrast agents, with an MCM-41 type pore structure, were characterized using a variety of methods including SEM and TEM, nitrogen adsorption measurements, thermogravimetric analysis (TGA), direct current plasma (DCP) spectroscopy, and powder X-ray diffraction (PXRD). The magnetic resonance (MR) relaxivities of these contrast agents were determined using a 3 T MR scanner. The r 1 relaxivities of these nanoparticles range from 4.1 to 8.4 mM ?1s ?1 on a per Gd basis. Additionally, the MSN particles were functionalized with an organic fluorophore and cancer cell targeting peptide to allow for demonstration of both the optical and MR contrast enhancing capabilities in vitro.

References

[1]  Bradley, W.G., Jr.; Stark, D. Magnetic Resonance Imaging; Mosby: St. Louis, MO, USA, 1999.
[2]  Merbach, A.E.; Helm, L.; Toth, E. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; John Wiley and Sons: Chichester, UK, 2001.
[3]  Lauffer, R.B.; McMurry, T.J.; Ellison, J.J.; Caravan, P. Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev. 1999, 99, 2293–2352. 11749483
[4]  Hyeon, T.; Piao, Y.; Kim, J. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 2009, 28, 372–390.
[5]  Meade, T.J.; Miqin, M.Z.; Lanza, G.; Hyeon, T.; Lin, W. Magnetic nanoparticles for early detection of cancer by magnetic resonance imaging. MRS Bull. 2009, 34, 441–448, doi:10.1557/mrs2009.120.
[6]  Basilion, J.P.; Chiocca, E.A.; Benveniste, H.; Bhorade, R.; Mahmood, U.; Moore, A.; Weissleder, R. In vivo magnetic resonance imaging of transgene expression. Nat. Med. 2000, 6, 351–354, doi:10.1038/73219. 10700241
[7]  Wickline, S.A.; Lanza, G.M.; Morawski, A.M. Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr. Opin. Biotechnol. 2005, 16, 89–92, doi:10.1016/j.copbio.2004.11.001. 15722020
[8]  Fisher, E.A.; Fayad, Z.A.; Williams, K.J.; Ma, Y.; Frias, J.C. Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. Nano Lett. 2006, 6, 2220–2224, doi:10.1021/nl061498r. 17034087
[9]  Lin, W.; Lin, W.; An, H.; Taylor, K.M.L.; Rieter, W.J. Nanoscale metal organic frameworks as potential multimodal contrast agents. J. Am. Chem. Soc. 2006, 128, 9024–9025, doi:10.1021/ja0627444. 16834362
[10]  Holloway, P.H.; Walter, G.A.; Santra, S.; Yang, H. GdIII-functionalized fluorescent quantum dots as multimodal imaging probes. Adv. Mater. 2006, 18, 2890–2894, doi:10.1002/adma.200502665.
[11]  Lin, W.; Tarrant, T.; Lin, W.; An, H.; Taylor, K.M.L.; Kim, J.S.; Rieter, W.J. Hybrid silica nanoparticles for multimodal imaging. Angew. Chem. Int. Ed. 2007, 46, 3680–3682, doi:10.1002/anie.200604738.
[12]  Lin, W.; Lin, W.; An, H.; Taylor, K.M.L.; Rieter, W.J.; Kim, J.S. Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging. J. Am. Chem. Soc. 2007, 129, 8962–8963, doi:10.1021/ja073062z. 17602632
[13]  Lin, W.; Jin, A.; Taylor, K.M.L. Surfactant-assisted synthesis of nanoscale gadolinium metal organic frameworks for potential multimodal imaging. Angew. Chem. Int. Ed. 2009, 47, 7722–7725.
[14]  Wickline, S.A.; Lanza, G.; Sicard, G.; Allen, J.; Scott, M.; Bibee, K.; Myerson, J.; Zhang, L.; Zhang, H. Quantifying the evolution of vascular barrier disruption in advanced atherosclerosis with semipermeant nanoparticle contrast agents. PLoS One 2011, 6, 0026385, doi:10.1371/journal.pone.0026385.
[15]  Jiang, C.; Lei, H.; Wang, X.; Hu, X.; Kuang, Y.; Shao, K.; Liu, S.; Han, L.; Huang, R. Chlorotoxin-modified macromolecular contrast agent for MRI tumor diagnosis. Biomaterials 2011, 32, 5177–5186. 21531455
[16]  Zhang, N.; Lu, Z.; Yu, D.; Chen, Z.; Liu, Y. Gadolinium-Loaded Polymeric Nanoparticles Modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials 2011, 32, 5167–5186, doi:10.1016/j.biomaterials.2011.03.077. 21521627
[17]  Yang, S.; Hu, H.; Li, F.; Wu, D.; Shi, X.; Dai, A.; Sun, Y.; Zhuang, Y.; Yang, H. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials 2011, 32, 4584–4593, doi:10.1016/j.biomaterials.2011.03.018. 21458063
[18]  Boyes, S.G.; Liberatore, M.W.; Serkova, N.J.; Rowe, M.D.; Sanchez, T.J.; Hatakeyama, W. Synthesis of gadolinium nanoscale metal-organic framework with hydrotropes: Manipulation of particle size and magnetic resonance imaging capability. ACS Appl. Mater. Interfaces 2011, 3, 1502–1510, doi:10.1021/am200075q. 21456529
[19]  Annapraga, A.; Kundra, V.; Bankson, J.; Sabapathy, D.; Ravoori, M.; Ghaghada, K.B. New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging. PLoS One 2009, 4, e7628, doi:10.1371/journal.pone.0007628. 19893616
[20]  Schlenker, J.L.; Higgins, J.B.; McCullen, S.B.; Sheppard, E.W.; Olson, D.H.; Chu, C.T.-W.; Schmitt, K.D.; Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843, doi:10.1021/ja00053a020.
[21]  Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712, doi:10.1038/359710a0.
[22]  Cui, F.-Z.; Chen, X.-H.; Fan, Y.-W.; Pang, W.-Q.; Luo, Z.-S.; Cai, Q. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chem. Mater. 2001, 13, 258–263, doi:10.1021/cm990661z.
[23]  Tsutsumi, K.; Matsumoto, A.; Unger, K.K.; Grun, M. Novel pathways for the preparation of mesoporous MCM-41 materials: Control of porosity and morphology. Microporous Mesoporous Mater. 1999, 27, 207–216, doi:10.1016/S1387-1811(98)00255-8.
[24]  Mou, C.-Y.; Hung, Y.; Wu, S.-H.; Lu, F. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009, 5, 1408–1413, doi:10.1002/smll.200900005. 19296554
[25]  Kuroda, K.; Yamauchi, Y.; Tonegawa, A.; Aoyama, Y.; Urata, C. Dialysis process for the removal of surfactants to form colloidal mesoporous silica nanoparticles. Chem. Commun. 2009, 5094–5096.
[26]  Haynes, C.L.; Abadeer, N.; Lin, Y.-S. Stability of small mesoporous silica nanoparticles in biological media. Chem. Commun. 2010, 47, 532–534.
[27]  Yin, Y.; Zhang, T.; Zhang, Q.; Ge, J. Core-satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability. Angew. Chem. Int. Ed. 2008, 47, 8924–8928, doi:10.1002/anie.200803968.
[28]  Lin, V.S.-Y.; Pruski, M.; Wiench, J.W.; Huh, S.; Chen, H.-T. Dialkylaminopyridine-functionalized mesoporous silica nanosphere as an efficent and highly stable heterogeneous nucleophillic catalyst. J. Am. Chem. Soc. 2005, 127, 13305–13311, doi:10.1021/ja0524898. 16173762
[29]  Lin, W.; Mihalcik, D.J. Mesoporous silica nanosphere supported ruthenium catalysts for asymmetric hydrogenation. Angew. Chem. Int. Ed. 2008, 47, 6229–6232, doi:10.1002/anie.200705656.
[30]  Xia, Y.; Sun, Y.; Campbell, C.T.; Fanson, P.T.; Grayson, B.; Cho, E.C.; Li, W.; Cobley, C.M.; Yang, Y.; Lim, B.; Dai, Y. A sinter resistant catalytic system based on platinum nanoparticles supported on TiO2 nanofibers and covered by porous silica. Angew. Chem. Int. Ed. 2010, 49, 8165–8168, doi:10.1002/anie.201001839.
[31]  Zink, J.I.; Tamanoi, F.; Nel, A.E.; Ruehm, S.G.; Xia, T.; Kovochich, M.; Liu, J.; Liong, M. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008, 2, 889–896, doi:10.1021/nn800072t. 19206485
[32]  Stoddart, J.F.; Zink, J.I.; Zhao, Y.L.; Thomas, C.R.; Ambrogio, M.W. Mechanized silica nanoparticles: A new frontier in theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 903–913, doi:10.1021/ar200018x. 21675720
[33]  Carter, M.B.; Phillips, B.; Liu, J.; Hanna, T.N.; Brown, P.A.; Durfee, P.N.; Padilla, D.; Phillips, G.K.; Carnes, E.C.; Ashley, C.E.; et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 2011, 10, 389–397, doi:10.1038/nmat2992. 21499315
[34]  Brinker, C.J.; Jiang, X.; Stace-Naughton, A.; Liu, J. Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J. Am. Chem. Soc. 2009, 131, 1354–1355, doi:10.1021/ja808018y. 19173660
[35]  Lin, V.S.-Y.; Trewyn, B.G.; Slowing, I. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J. Am. Chem. Soc. 2006, 128, 14792–14793, doi:10.1021/ja0645943. 17105274
[36]  Lin, V.S.-Y.; Trewyn, B.G.; Slowing, I. Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J. Am. Chem. Soc. 2007, 129, 8845–8849, doi:10.1021/ja0719780. 17589996
[37]  Feng, P.; Liu, J.; Liao, P.; Liu, R. Responsive polymer-coated mesoporous silica as a pH-sensitive nanocarrier for controlled release. Langmuir 2011, 27, 3095–3099, doi:10.1021/la104973j.
[38]  Feng, P.; Zhang, Y.; Liu, R. Multiresponsive supramolecular nanogated ensembles. J. Am. Chem. Soc. 2009, 131, 15128–15129, doi:10.1021/ja905288m. 19746981
[39]  Lin, W.; Huxford, R.C.; Della Rocca, J.; Taylor-Pashow, K.M.L. Hybrid nanomaterials ffor biomedical applications. Chem. Commun. 2010, 46, 5832–5849, doi:10.1039/c002073g.
[40]  Lin, W.; Lin, W.; An, H.; Rieter, W.J.; Kim, J.S.; Taylor, K.M.L. Mesoporous silica nanospheres as highly efficent MRI contrast agents. J. Am. Chem. Soc. 2008, 130, 2154–2155, doi:10.1021/ja710193c. 18217764
[41]  Lin, V.S.-Y.; Pruski, M.; Song, S.; Trewyn, B.G.; Wiench, J.W.; Huh, S. Tuning of particle morphology and pore properties in mesoporous silicas with multiple functional groups. Chem. Commun. 2003, 2364–2365.
[42]  Lin, V.S.-Y.; Pruski, M.; Yoo, J.-C.; Wiench, J.W.; Huh, S. Organic functionalization and morphology control of mesoporous silicas via a Co-condensation synthesis method. Chem. Mater. 2003, 15, 4247–4256, doi:10.1021/cm0210041.
[43]  Kok, R.J.; Molema, G.; Schiffelers, R.M.; Temming, K. RGD-based strategies for selective delivery of therapuetics and imaging agents to the tumour vasculature. Drug Resist. Updat. 2005, 8, 381–402, doi:10.1016/j.drup.2005.10.002. 16309948

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133