全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2011 

Films, Buckypapers and Fibers from Clay, Chitosan and Carbon Nanotubes

DOI: 10.3390/nano1010003

Keywords: chitosan, clay, carbon nanotubes, electrical, mechanical

Full-Text   Cite this paper   Add to My Lib

Abstract:

The mechanical and electrical characteristics of films, buckypapers and fiber materials from combinations of clay, carbon nanotubes (CNTs) and chitosan are described. The rheological time-dependent characteristics of clay are maintained in clay–carbon nanotube–chitosan composite dispersions. It is demonstrated that the addition of chitosan improves their mechanical characteristics, but decreases electrical conductivity by three-orders of magnitude compared to clay–CNT materials. We show that the electrical response upon exposure to humid atmosphere is influenced by clay-chitosan interactions, i.e., the resistance of clay–CNT materials decreases, whereas that of clay–CNT–chitosan increases.

References

[1]  Bergaya, F.; Theng, B.K.G.; Lagaly, G. Handbook of Clay Science; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1.
[2]  Martin, C.; Pignon, F.; Piau, J.M.; Magnin, A.; Lindner, P.; Cabane, B. Dissociation of thixotropic clay gels. Phys. Rev. E 2002, 66, 021401:1–021401:11.
[3]  Kelessidis, V.C.; Christidis, G.; Makri, P.; Hadjistamou, V.; Tsamantaki, C.; Mihalakis, A.; Papanicolaou, C.; Foscolos, A. Gelation of water-bentonite suspensions at high temperatures and rheological control with lignite addition. Appl. Clay Sci. 2007, 36, 221–231.
[4]  Jung, H.; Kim, H.-M.; Choy, Y.B.; Hwang, S.-J.; Choy, J.-H. Itraconazole–laponite: Kinetics and mechanism of drug release. Appl. Clay Sci. 2008, 40, 99–107.
[5]  Lin, F.H.; Lee, Y.H.; Jian, C.H.; Wong, J.-M.; Shieh, M.-J.; Wang, C.-Y. A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials 2002, 23, 1981–1987.
[6]  In het Panhuis, M. Carbon nanotubes: Enhancing the polymer building blocks for intelligent materials. J. Mater. Chem. 2006, 16, 3598–3605.
[7]  Tang, C.; Xiang, L.; Su, J.; Wang, K.; Yang, C.; Zhang, Q.; Fu, Q. Largely improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay. J. Phys. Chem. B 2008, 112, 3876–3881.
[8]  Liu, L.; Grunlan, J.C. Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites. Adv. Funct. Mater. 2007, 17, 2343–2348.
[9]  Tang, C.; Chen, N.; Zhang, Q.; Wang, K.; Fu, Q.; Zhang, X. Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions. Polym. Degrad. Stab. 2009, 94, 124–131.
[10]  Sun, D.; Chu, C.C.; Sue, H.J. Simple approach for preparation of epoxy hybrid nanocomposites based on carbon nanotubes and a model clay. Chem. Mater. 2010, 22, 3773–3778.
[11]  Miriyala, S.M.; Kim, Y.S.; Liu, L.; Grunlan, J.C. segregated networks of carbon black in poly(vinyl acetate) latex: Influence of clay on the electrical and mechanical behavior. Macromol. Chem. Phys. 2008, 209, 2399–2409.
[12]  Etika, K.C.; Liu, L.; Hess, L.A.; Grunlan, J.C. The influence of synergistic stabilization of carbon black and clay on the electrical and mechanical properties of epoxy composites. Carbon 2009, 47, 3128–3136.
[13]  Yamamoto, H.; Nakazawa, A.; Hayakawa, T.; Nishi, N. Induced optical-activity in the complex of chitosan with azo dyes. J. Polym. Sci. Lett. Ed. 1984, 22, 255–260.
[14]  Patil, A.J.; Muthusamy, E.; Mann, S. Fabrication of functional protein-organoclay lamellar nanocomposites by biomolecule-induced assembly of exfoliated aminopropyl-functionalized magnesium phyllosilicates. J. Mater. Chem. 2005, 15, 3838–3843.
[15]  Ryabenko, A.; Dorofeeva, T.; Zvereva, G. UV-VIS-NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and van-der-Waals SWCNT/SWCNT interaction. Verification of the SWCNT content measurements by absorption spectroscopy. Carbon 2004, 42, 1523–1535.
[16]  Attal, S.; Thiruvengadathan, R.; Regev, O. Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV-visible absorption spectroscopy. Anal. Chem. 2006, 78, 8098–8104.
[17]  Barnes, H.A.; Hutton, J.F.; Walters, K. An Introduction to Rheology; Elsevier: Amsterdam, The Netherlands, 1989.
[18]  Gunister, E.; Pestreli, D.; Unlu, C.H.; Atici, O.; Gungor, N. Synthesis and characterization of chitosan-MMT biocomposite systems. Carbohyd. Polym. 2007, 67, 358–365.
[19]  Mezger, T.G. The Rheology Handbook, 2nd ed. ed.; Vincentz Network: Hannover, Germany, 2006.
[20]  Ferris, C.J.; In het Panhuis, M. Gel-carbon nanotube composites: The effect of carbon nanotubes on gelation and conductivity behaviour. Soft Matter 2009, 5, 1466–1473.
[21]  In het Panhuis, M.; Gowrisanker, S.; Vanesko, D.J.; Mire, C.A.; Jia, H.; Xie, H.; Baughman, R.H.; Musselman, I.H.; Gnade, B.E.; Dieckmann, G.R.; Draper, R.K. Nanotube network transistors from peptide-wrapped single-walled carbon nanotubes. Small 2005, 1, 820–823.
[22]  Small, W.R.; In het Panhuis, M. Inkjet printing of transparent, electrically conducting single-wall carbon nanotube composites. Small 2007, 3, 1500–1503.
[23]  Granero, A.J.; Razal, J.M.; Wallace, G.G.; In het Panhuis, M. Spinning carbon nanotube-gel fibers using polyelectrolyte complexation. Adv. Funct. Mater. 2008, 18, 3759–3764.
[24]  In het Panhuis, M.; Heurtematte, A.; Small, W.R.; Paunov, V.N. Inkjet printed water sensitive transparent films from natural gum—Carbon nanotube composites. Soft Matter 2007, 3, 840–843.
[25]  Boge, J.; Sweetman, L.J.; In het Panhuis, M.; Ralph, S.F. The effect of preparation conditions and biopolymer dispersants on the properties of SWNT buckypapers. J. Mater. Chem. 2009, 19, 9131–9140.
[26]  Yamamoto, H.; Senoo, Y. Polyion complex fiber and capsule formed by self-assembly of chitosan and gellan at solution interfaces. Macromol. Chem. Phys. 2000, 201, 84–92.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133