An easy method to synthesize SiO x coated carbon nanotubes (SiO x-CNT) through thermal decomposition of polycarbomethylsilane adsorbed on the surface of CNTs is reported. Physical properties of SiO x-CNT samples depending on various Si contents and synthesis conditions are examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen isotherm, scanning electron microscope (SEM), and transmission electron microscope (TEM). Morphology of the SiO x-CNT appears to be perfectly identical to that of the pristine CNT. It is confirmed that SiO x is formed in a thin layer of approximately 1 nm thickness over the surface of CNTs. The specific surface area is significantly increased by the coating, because thin layer of SiO x is highly porous. The surface properties such as porosity and thickness of SiO x layers are found to be controlled by SiO x contents and heat treatment conditions. The preparation method in this study is to provide useful nano-hybrid composite materials with multi-functional surface properties.
References
[1]
Song, H.; Qiu, X.; Li, F.; Zhu, W.; Chen, L. Ethanol electro-oxidation on catalysts with TiO2 coated carbon nanotubes as support. Electrochem. Commun. 2007, 9, 1416–1421, doi:10.1016/j.elecom.2007.01.048.
[2]
Chen, Y.; Zhu, C.; Wang, T. The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures. Nanotechnol. 2006, 17, 3012–3017, doi:10.1088/0957-4484/17/12/033.
[3]
Varghese, O.K.; Kichambre, P.D.; Gong, D.; Ong, K.G.; Dickey, E.C.; Grimes, C.A. Gas sensing characteristics of multi-wall carbon nanotubes. Sens. Actuators B Chem. 2001, 81, 32–41, doi:10.1016/S0925-4005(01)00923-6.
[4]
Collins, P.G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000, 287, 1801–1804, doi:10.1126/science.287.5459.1801. 10710305
Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625, doi:10.1126/science.287.5453.622. 10649989
[7]
Jiang, L.; Gao, L. Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity. Mater. Chem. Phys. 2005, 91, 313–316, doi:10.1016/j.matchemphys.2004.11.028.
[8]
Gong, K.P.; Yu, P.; Su, L.; Xiong, S.X.; Mao, L.Q. Polymer-assisted synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen. J. Phys. Chem. C 2007, 111, 1882–1887, doi:10.1021/jp0628636.
[9]
Pan, L.; Konishi, Y.; Tanaka, H. Effect of MgO coating on field emission of a stand-alone carbon nanotube. J. Vac. Sci. Technol. B 2007, 25, 1581–1583, doi:10.1116/1.2770740.
[10]
Bourlinos, A.B.; Georgakilas, V.; Zboril, R.; Dallas, P. Preparation of a water-dispersible carbon nanotube-silica hybrid. Carbon 2007, 45, 2136–2139, doi:10.1016/j.carbon.2007.05.021.
[11]
Bottini, M.; Tautz, L.; Huynh, H.; Monosov, E.; Bottini, N.; Dawson, M.I.; Bellucci, S.; Mustelin, T. Covalent decoration of multi-walled carbon nanotubes with silica nanoparticles. Chem. Commun. 2005, 6, 758–760.
[12]
Riggs, J.E.; Walker, D.B.; Carroll, D.L.; Sun, Y.P. Optical limiting properties of suspended and solubilized carbon nanotubes. J. Phys. Chem. B 2000, 104, 7071–7076, doi:10.1021/jp0011591.
[13]
Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of nanotube. Chem. Rev. 2006, 106, 1105–1136, doi:10.1021/cr050569o. 16522018
Balasubramanian, K.; Burghard, M. Chemically functionalized carbon nanotubes. Small 2005, 2, 180–192, doi:10.1002/smll.200400118.
[16]
Gojny, F.H.; Nastalczyk, J.; Roslaniec, Z.; Schulte, K. Surface modified multi-walled carbon nanotubes in CNT/epoxy composites. Chem. Phys. Lett. 2003, 370, 820–824, doi:10.1016/S0009-2614(03)00187-8.
[17]
Liu, L.; Qin, Y.; Guo, Z.X.; Zhu, D. Reduction of solubilized multi-walled carbon nanotubes. Carbon 2003, 41, 331–335, doi:10.1016/S0008-6223(02)00286-5.
[18]
Fu, K.F.; Sun, Y.P. Dispersion and solubilization of carbon nanotubes. J. Nanosci. Nanotechnol. 2003, 3, 351–364, doi:10.1166/jnn.2003.225.
[19]
Tasis, D.; Tagmatarchis, N.; Georgakilas, V.; Prato, M. Soluble carbon nanotubes. Chem. Eur. J. 2003, 9, 4000–4008, doi:10.1002/chem.200304800.
[20]
Shallenberger, J.R. Determination of chemistry and microstructure in SiOx (0.1 < x < 0.8) films by X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A 1996, 14, 693–698, doi:10.1116/1.580373.
[21]
Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619, doi:10.1351/pac198557040603.
[22]
Salzmann, C.G.; Llewellyn, S.A.; Tobias, G.; Ward, M.A.H.; Huh, Y.; Green, M.L.H. The role of carboxylated carbonaceous fragments in the functionalization and spectroscopy of a single-walled carbon-nanotube material. Adv. Mater. 2007, 19, 883–887, doi:10.1002/adma.200601310.
[23]
Gardner, S.D.; Singamsetty, C.S.K.; Booth, G.L.; He, G.; Pittman, C.U. Surface characterization of carbon fibers using angle-resolved XPS and ISS. Carbon 1995, 33, 587–595, doi:10.1016/0008-6223(94)00144-O.
[24]
Wang, X.; Miao, X.; Li, Z.; Deng, W. Fabrication of mesoporous silica hollow spheres using triblock copolymer PEG–PPG–PEG as template. J. Non-Cryst. Solids 2010, 356, 898–905, doi:10.1016/j.jnoncrysol.2009.12.029.