全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2012 

Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

DOI: 10.3390/nano2020187

Keywords: oxidized nanocellulose, amino acids, peptides, amide bond, spectroscopic characterization

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl- N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques.

References

[1]  Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393, doi:10.1002/anie.200460587.
[2]  Henriksson, M.; Berglund, L. Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J. Appl. Polym. Sci. 2007, 106, 2817–2824, doi:10.1002/app.26946.
[3]  Iwamoto, S.; Nakagaito, A.N.; Yano, H. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl. Phys. A 2007, 89, 461–466, doi:10.1007/s00339-007-4175-6.
[4]  Chanzy, H. Aspects of cellulose structure. In Cellulose Sources and Exploitation; Kennedy, J.F., Philips, G.O., William, P.A., Eds.; Ellis Horwood Ltd.: New York, NY, USA, 1990; pp. 3–12.
[5]  Klemm, D.; Schumann, D.; Kramer, F.; Hessler, N.; Koth, D.; Sultanova, B. Nanocellulose materials: Different cellulose, different functionality. Macromol. Symp. 2009, 280, 60–71, doi:10.1002/masy.200950608.
[6]  Herrick, F.W.; Casebier, R.L.; Hamilton, J.K.; Sandberg, K.R. Microfibrillated cellulose: Morphology and accessibility. J. Appl. Polym. Sci. Appl. Polym. Symp. 1983, 37, 797–805.
[7]  Revol, J.F.; Bradford, H.; Giasson, J.; Marchessault, R.H.; Gray, D.G. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 1992, 14, 170–172, doi:10.1016/S0141-8130(05)80008-X.
[8]  de Nooy, A.E.; Besemer, A.C.; van Bekkum, H. Highly selective nitrosyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr. Res. 1995, 69, 89–98.
[9]  Chang, P.S.; Robyt, J.F. Oxidation of primary alcohol groups of naturally occurring polysacccharides with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion. J. Carbohydr. Chem. 1996, 15, 819–830, doi:10.1080/07328309608005694.
[10]  Beck-Candanedo, S.; Roman, M.; Gray, D.G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 2005, 6, 1048–1054, doi:10.1021/bm049300p.
[11]  Saito, T.; Nishiyama, Y.; Putaux, J.L.; Vignon, M.; Isogai, A. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 2006, 7, 1687–1691, doi:10.1021/bm060154s.
[12]  Saito, T.; Isogai, A. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 2004, 5, 1983–1989, doi:10.1021/bm0497769.
[13]  Bondeson, D.; Mathew, A.; Oksman, K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 2006, 13, 171–180, doi:10.1007/s10570-006-9061-4.
[14]  Elazzouzi-Hafraoui, S.; Nishiyama, Y.; Putaux, J.L.; Heux, L.; Dubreuil, F.; Rochas, C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 2008, 9, 57–65, doi:10.1021/bm700769p.
[15]  Turbak, A.F.; Snyder, F.W.; Sandberg, K.R. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J. Appl. Polym. Sci. Appl. Polym. Symp. 1983, 37, 815–827.
[16]  Sugiyama, J.; Chanzy, H.; Revol, J.F. On the polarity of cellulose in the cell wall of Valonia. Planta 1994, 193, 260–265.
[17]  Isogai, A.; Kato, Y. Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 1998, 5, 153–164, doi:10.1023/A:1009208603673.
[18]  Tahiri, C.; Vignon, M.R. TEMPO-oxidation of cellulose: Synthesis and characterization of polyglucuronans. Cellulose 2000, 7, 177–188, doi:10.1023/A:1009276009711.
[19]  Saito, T.; Shibata, I.; Isogai, A.; Suguri, N.; Sumikwa, N. Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr. Polym. 2005, 61, 414–419, doi:10.1016/j.carbpol.2005.05.014.
[20]  Hoare, D.G.; Koshland, D.E. A method for the quantitative modification and estimation of carboxylic acid groups in proteins. J. Biol. Chem. 1967, 242, 2447–2453. 6026234
[21]  Bulpitt, P.; Aeschlimann, D. New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J. Biomed. Mater. Res. 1999, 47, 152–169, doi:10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-I.
[22]  Fujisawa, S.; Okita, Y.; Saito, T.; Togawa, E.; Isogai, A. Formation of N-acylureas on the surface of TEMPO oxidizedcellulose nanofibril with carbodiimide in DMF. Cellulose 2011, 18, 1191–1199, doi:10.1007/s10570-011-9578-z.
[23]  Azzam, F.; Heux, L.; Putaux, J.L.; Jean, B. Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystal. Biomacromolecules 2010, 11, 3652–3659, doi:10.1021/bm101106c.
[24]  Follain, N.; Montanari, S.; Jeacomine, I.; Gambarelli, S.; Vignon, M.R. Coupling of amines with polyglucuronic acid: Evidence for amide bond formation. Carbohydr. Polym. 2008, 74, 333–343, doi:10.1016/j.carbpol.2008.02.016.
[25]  Jiang, K.; Schadler, L.S.; Siegel, R.W.; Zhang, X.; Zhang, H.; Terrones, M. Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. J. Mater. Chem. 2004, 14, 37–39, doi:10.1039/b310359e.
[26]  Lasseuguette, E. Grafting onto microfibrils of native cellulose. Cellulose 2008, 15, 571–580, doi:10.1007/s10570-008-9200-1.
[27]  Carr, M.E.; Hermans, J. Size and density of fibrin fibers from turbidity. Macromolecules 1978, 11, 46–50, doi:10.1021/ma60061a009.
[28]  Danishefsky, I.; Siskovic, E. Conversion of carboxyl groups of mucopolysaccharides into amides of amino acid esters. Carbohydr. Res. 1971, 16, 199–205, doi:10.1016/S0008-6215(00)86114-5.
[29]  Rzayev, J.; Hillmyer, M.A. Nanochannel array plastics with tailored surface chemistry. J. Am. Chem. Soc. 2005, 127, 13373–13379, doi:10.1021/ja053731d. 16173771
[30]  Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 2007, 8, 2485–2491, doi:10.1021/bm0703970.
[31]  Olmstead, J.A.; Gray, D.G. Fluorescence spectroscopy of cellulose, lignin and mechanical pulps: A review. J. Pulp. Pap. Sci. 1997, 23, J571–J581.
[32]  Toner, S.D.; Plitt, K.F. Spectrofluorometric studies of degraded cotton cellulose. Tappi. J. 1962, 45, 681–688.
[33]  Albani, J.R. Fluorescence spectroscopy principles. In Principles and Applications of Fluorescence Spectroscopy; Blackwell Science Ltd.: Oxford, UK, 2007; pp. 88–113.
[34]  Oh, S.Y.; Yoo, D.I.; Shin, Y.; Seo, G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr. Res. 2005, 340, 417–428, doi:10.1016/j.carres.2004.11.027.
[35]  ?ojewska, J.; Mi?kowiec, P.; ?ojewski, T.; Proniewicz, L.M. Cellulose oxidative and hydrolytic degradation: In situ FTIR approach. Polym. Deg. Stab. 2005, 88, 512–520, doi:10.1016/j.polymdegradstab.2004.12.012.
[36]  Sun, D.; Zhou, L.; Wu, Q.; Yang, S. Preliminary research on structure and properties of nano-cellulose. J. Wuhan. Univ. Tech. Mater. Sci. Ed. 2007, 22, 677–680, doi:10.1007/s11595-006-4677-7.
[37]  Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P.; Gandini, A.; Fardim, P.; Holmbom, B. Surface characterization by XPS, contact angle measurements and ToF-SIMS of cellulose fibers partially esterified with fatty acids. J. Col. Int. Sci. 2006, 301, 205–209, doi:10.1016/j.jcis.2006.04.074.
[38]  Matuana, L.M.; Balatinecz, J.J.; Sodhi, R.N.S.; Park, C.B. Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Sci. Technol. 2001, 35, 191–201, doi:10.1007/s002260100097.
[39]  Hua, X.; Kaliaguine, S.; Kokta, B.V.; Adnot, A. Surface analysis of explosion pulps by ESCA Part 1. Carbon (1s) spectra and oxygen-to-carbon ratios. Wood Sci. Technol. 1993, 27, 449–459.
[40]  Dorris, G.M.; Gray, D.G. The surface analysis of paper and wood fibers by ESCA. Cellulose Chem. Technol. 1978, 12, 9–23.
[41]  Ahmed, A.; Adnot, A.; Granmaison, J.L.; Kaliaguine, S.; Doucet, J. ESCA analysis of cellulosic materials. Cellulose Chem. Technol. 1987, 21, 483–492.
[42]  Barry, A.O.; Zoran, Z. Surface analysis by ESCA of sulfite post-treated CTMP. J. Appl. Polym. Sci. 1990, 39, 31–42, doi:10.1002/app.1990.070390103.
[43]  Liu, F.P.P.; Rials, T.G.; Simonsen, J. Relationship of wood surface energy to surface composition. Langmuir 1998, 14, 536–541, doi:10.1021/la970573y.
[44]  Kamdem, D.P.; Zhang, J.; Adnot, A. Identification of cupric and cuprous copper in copper naphthenate-treated wood by X-ray photoelectron spectroscopy. Holzforschung 2001, 55, 16–20, doi:10.1515/HFSG.2001.16.
[45]  Johansson, L.S.; Campbell, J.M. Reproducible XPS on biopolymers: Cellulose studies. Surf. Interf. Anal. 2004, 36, 1018–1022, doi:10.1002/sia.1827.
[46]  Nzokou, P.; Kamdem, D.P. X-ray photoelectron spectroscopy study of red oak-(Quercus rubra), black cherry-(Prunus serotina) and red pine-(Pinus resinosa) extracted wood surfaces. Surf. Interf. Anal. 2005, 37, 689–694, doi:10.1002/sia.2064.
[47]  Kamdem, D.P.; Riedl, B.; Adnot, A.; Kaliaguine, S. ESCA spectroscopy of poly(methylmethacrylate) grafted onto wood fibers. J. Appl. Polym. Sci. 1991, 43, 1901–1912, doi:10.1002/app.1991.070431015.
[48]  Jansen, R.J.J.; Van Bekkum, H. XPS of nitrogen-containing functional groups on activated carbon. Carbon 1995, 33, 1021–1027, doi:10.1016/0008-6223(95)00030-H.
[49]  Zubavichus, Y.; Zharnikov, M.; Shaporenko, A.; Fuchs, O.; Weinhardt, L.; Heske, C.; Umbach, E.; Denlinger, J.D.; Grunze, M. Soft X-ray induced decomposition of phenylalanine and tyrosine: A comparative study. J. Phys. Chem. A 2004, 108, 4557–4565, doi:10.1021/jp049376f.
[50]  Fujisawa, S.; Okita, Y.; Fukuzumi, H.; Saito, T.; Isogai, A. Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr. Polym. 2011, 84, 579–583, doi:10.1016/j.carbpol.2010.12.029.
[51]  Barazzouk, S.; Daneault, C. Tryptophan-based peptides grafted onto oxidized nanocellulose. Cellulose 2012, 19, 481–493, doi:10.1007/s10570-011-9633-9.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133