全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2012 

Al2O3 Nanoparticle Addition to Commercial Magnesium Alloys: Multiple Beneficial Effects

DOI: 10.3390/nano2020147

Keywords: Al2O3 nanoparticles, AZ series, ZK series, microstructure, mechanical properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

The multiple beneficial effects of Al 2O 3 nanoparticle addition to cast magnesium based systems (followed by extrusion) were investigated, constituting either: (a) enhanced strength; or (b) simultaneously enhanced strength and ductility of the corresponding magnesium alloys. AZ31 and ZK60A nanocomposites containing Al 2O 3 nanoparticle reinforcement were each fabricated using solidification processing followed by hot extrusion. Compared to monolithic AZ31 (tension levels), the corresponding nanocomposite exhibited higher yield strength (0.2% tensile yield strength (TYS)), ultimate strength (UTS), failure strain and work of fracture (WOF) (+19%, +21%, +113% and +162%, respectively). Compared to monolithic AZ31 (compression levels), the corresponding nanocomposite exhibited higher yield strength (0.2% compressive yield strength (CYS)) and ultimate strength (UCS), lower failure strain and higher WOF (+5%, +5%, ?4% and +11%, respectively). Compared to monolithic ZK60A (tension levels), the corresponding nanocomposite exhibited lower 0.2% TYS and higher UTS, failure strain and WOF (?4%, +13%, +170% and +200%, respectively). Compared to monolithic ZK60A (compression levels), the corresponding nanocomposite exhibited lower 0.2% CYS and higher UCS, failure strain and WOF (?10%, +7%, +15% and +26%, respectively). The capability of Al 2O 3 nanoparticles to enhance the properties of cast magnesium alloys in a way never seen before with micron length scale reinforcements is clearly demonstrated.

References

[1]  Morisada, Y.; Fujii, H.; Nagaoka, T.; Fukusumi, M. Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Mater. Sci. Eng. A 2006, 433, 50–54, doi:10.1016/j.msea.2006.06.089.
[2]  Morisada, Y.; Fujii, H.; Nagaoka, T.; Fukusumi, M. Nanocrystallized magnesium alloy—Uniform dispersion of C60 molecules. Scr. Mater. 2006, 55, 1067–1070, doi:10.1016/j.scriptamat.2006.07.055.
[3]  Morisada, Y.; Fujii, H.; Nagaoka, T.; Fukusumi, M. MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater. Sci. Eng. A 2006, 419, 344–348, doi:10.1016/j.msea.2006.01.016.
[4]  Lapovok, R.; Thomson, P.F.; Cottam, R.; Estrin, Y. Processing routes leading to superplastic behaviour of magnesium alloy ZK60. Mater. Sci. Eng. A 2005, 410–411, 390–393.
[5]  Kim, W.J.; Kim, M.J.; Wang, J.Y. Superplastic behavior of a fine-grained ZK60 magnesium alloy processed by high-ratio differential speed rolling. Mater. Sci. Eng. A 2009, 527, 322–327, doi:10.1016/j.msea.2009.08.064.
[6]  Watanabe, H.; Mukai, T.; Higashi, K. Superplasticity in a ZK60 magnesium alloy at low temperatures. Scr. Mater. 1999, 40, 477–484, doi:10.1016/S1359-6462(98)00469-2.
[7]  Nieh, T.G.; Schwartz, A.J.; Wadsworth, J. Superplasticity in a 17 vol.% SiC particulate-reinforced ZK60A magnesium composite (ZK60/SiC/17p). Mater. Sci. Eng. A 1996, 208, 30–36, doi:10.1016/0921-5093(95)10060-1.
[8]  Yan, F.; Wu, K.; Wu, G.L.; Lee, B.L.; Zhao, M. Superplastic deformation behavior of a 19.7 vol.% β-SiCw/ZK60 composite. Mater. Lett. 2003, 57, 1992–1996, doi:10.1016/S0167-577X(02)01118-7.
[9]  Feng, Y.; Zhou, X.; Min, Z.; Kun, W. Superplasticity and texture of SiC whiskers in a magnesium-based composite. Scr. Mater. 2005, 53, 361–365, doi:10.1016/j.scriptamat.2005.03.049.
[10]  Sasaki, G.; Wang, W.G.; Hasegawa, Y.; Choi, Y.B.; Fuyama, N.; Matsugi, K.; Yanagisawa, O. Surface treatment of Al18B4O33 whisker and development of Al18B4O33/ZK60 magnesium alloy matrix composite. J. Mater. Proc. Technol. 2007, 187–188, 429–432, doi:10.1016/j.jmatprotec.2006.11.076.
[11]  Srivatsan, T.S.; Godbole, C.; Paramsothy, M.; Gupta, M. The role of aluminum oxide particulate reinforcements on cyclic fatigue and final fracture behavior of a novel magnesium alloy. Mater. Sci. Eng. A 2012, 532, 196–211, doi:10.1016/j.msea.2011.10.081.
[12]  Tjong, S.C. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv. Eng. Mater. 2007, 9, 639–652, doi:10.1002/adem.200700106.
[13]  Hassan, S.F.; Gupta, M. Effect of type of primary processing on the microstructure, CTE and mechanical properties of magnesium/alumina nanocomposites. Comp. Struct. 2006, 72, 19–26, doi:10.1016/j.compstruct.2004.10.008.
[14]  Hassan, S.F.; Gupta, M. Effect of different types of nano-size oxide particulates on microstructural and mechanical properties of elemental Mg. J. Mater. Sci. 2006, 41, 2229–2236, doi:10.1007/s10853-006-7178-3.
[15]  Paramsothy, M.; Chan, J.; Kwok, R.; Gupta, M. The synergistic ability of Al2O3 nanoparticles to enhance mechanical response of hybrid alloy AZ31/AZ91. J. Alloys Compd. 2011, 509, 7572–7578, doi:10.1016/j.jallcom.2011.04.120.
[16]  Hassan, S.F.; Gupta, M. Development of ductile magnesium composite materials using titanium as reinforcement. J. Alloys Compd. 2002, 345, 246–251, doi:10.1016/S0925-8388(02)00413-9.
[17]  Perez, P.; Garces, G.; Adeva, P. Mechanical properties of a Mg-10 (vol.%) Ti composite. Compos. Sci. Technol. 2004, 64, 145–151, doi:10.1016/S0266-3538(03)00215-X.
[18]  Wong, W.L.E.; Gupta, M. Enhancing thermal stability, modulus and ductility of magnesium using molybdenum as reinforcement. Adv. Eng. Mater. 2005, 7, 250–256, doi:10.1002/adem.200400137.
[19]  Hassan, S.F.; Gupta, M. Development of a novel magnesium/nickel composite with improved mechanical properties. J. Alloys Compd. 2002, 335, L10–L15, doi:10.1016/S0925-8388(01)01841-2.
[20]  Huard, G.; Angers, R.; Krishnadev, M.R.; Tremblay, R.; Dube, D. SiCp/Mg composites made by low-energy mechanical processing. Can. Metall. Quart. 1999, 38, 193–200, doi:10.1016/S0008-4433(99)00006-3.
[21]  Avedesian, M.M.; Baker, H. ASM Specialty Handbook: Magnesium and Magnesium Alloys; ASM International?: Ohio, OH, USA, 1999; pp. 12–25, 165–172, 226–248, 258–263.
[22]  Tham, L.M.; Gupta, M.; Cheng, L. Influence of processing parameters during disintegrated melt deposition processing on near net shape synthesis of aluminium based metal matrix composites. Mater. Sci. Technol. 1999, 15, 1139–1146.
[23]  Han, B.Q.; Dunand, D.C. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Mater. Sci. Eng. A 2000, 277, 297–304, doi:10.1016/S0921-5093(99)00074-X.
[24]  Wettability at High Temperatures; Pergamon Materials Series; Eustathopoulos, N., Nicholas, M.G., Drevet, B., Eds.; Pergamon: New York, NY, USA, 1999; Volume 3.
[25]  Gilchrist, J.D. Extraction Metallurgy, 3rd ed.; Pergamon: New York, NY, USA, 1989.
[26]  Gupta, M.; Lai, M.O.; Soo, C.Y. Effect of type of processing on the microstructural features and mechanical properties of A1-Cu/SiC metal matrix composites. Mater. Sci. Eng. A 1996, 210, 114–122, doi:10.1016/0921-5093(95)10077-6.
[27]  Hassan, S.F.; Gupta, M. Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J. Alloys Compd. 2006, 419, 84–90, doi:10.1016/j.jallcom.2005.10.005.
[28]  Hassan, S.F.; Gupta, M. Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement. Metall. Mater. Trans. A 2005, 36, 2253–2258, doi:10.1007/s11661-005-0344-4.
[29]  Hull, D.; Bacon, D.J. Introduction to Dislocations, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2002; pp. 43, 231.
[30]  Mukai, T.; Yamanoi, M.; Watanabe, H.; Higashi, K. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr. Mater. 2001, 45, 89–94, doi:10.1016/S1359-6462(01)00996-4.
[31]  Goh, C.S.; Wei, J.; Lee, L.C.; Gupta, M. Properties and deformation behaviour of Mg-Y2O3 nanocomposites. Acta Mater. 2007, 55, 5115–5121, doi:10.1016/j.actamat.2007.05.032.
[32]  Szaraz, Z.; Trojanova, Z.; Cabbibo, M.; Evangelista, E. Strengthening in a WE54 magnesium alloy containing SiC particles. Mater. Sci. Eng. A 2007, 462, 225–229, doi:10.1016/j.msea.2006.01.182.
[33]  Dai, L.H.; Ling, Z.; Bai, Y.L. Size-dependant inelastic behavior of particle-reinforced metal-matrix composites. Comp. Sci. Technol. 2001, 61, 1057–1063, doi:10.1016/S0266-3538(00)00235-9.
[34]  Jayaramanavar, P.; Paramsothy, M.; Balaji, A.; Gupta, M. Tailoring the tensile/compressive response of magnesium alloy ZK60A using Al2O3 nanoparticles. J. Mater. Sci. 2010, 45, 1170–1178, doi:10.1007/s10853-009-4059-6.
[35]  Hassan, S.F.; Gupta, M. Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing. J. Alloys Compd. 2007, 429, 176–183, doi:10.1016/j.jallcom.2006.04.033.
[36]  Reed-Hill, R.E. Physical Metallurgy Principles, 2nd ed.; D Van Nostrand Company: New York, NY, USA, 1964; pp. 192, 267, 725.
[37]  Laser, T.; Hartig, C.; Nurnberg, M.R.; Letzig, D.; Bormann, R. The influence of calcium and cerium mischmetal on the microstructural evolution of Mg-3Al-1Zn during extrusion and resulting mechanical properties. Acta Mater. 2008, 56, 2791–2798, doi:10.1016/j.actamat.2008.02.010.
[38]  Bohlen, J.; Yi, S.B.; Swiostek, J.; Letzig, D.; Brokmeier, H.G.; Kainer, K.U. Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31. Scr. Mater. 2005, 53, 259–264, doi:10.1016/j.scriptamat.2005.03.036.
[39]  Gupta, M.; Lai, M.O.; Lim, S.C. Regarding the processing associated microstructure and mechanical properties improvement of an Al-4.5 Cu alloy. J. Alloys Compd. 1997, 260, 250–255, doi:10.1016/S0925-8388(97)00156-4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133