Half-Heusler (HH) alloys have attracted considerable interest as promising thermoelectric (TE) materials in the temperature range around 700 K and above, which is close to the temperature range of most industrial waste heat sources. The past few years have seen nanostructuing play an important role in significantly enhancing the TE performance of several HH alloys. In this article, we briefly review the recent progress and advances in these HH nanocomposites. We begin by presenting the structure of HH alloys and the different strategies that have been utilized for improving the TE properties of HH alloys. Next, we review the details of HH nanocomposites as obtained by different techniques. Finally, the review closes by highlighting several promising strategies for further research directions in these very promising TE materials.
References
[1]
Slack, G.A. New Materials and Performance Limits for Thermoelectric Cooling; D. M. Rowe: Boca Raton, FL, USA, 1995; p. 701.
[2]
Tritt, T.M. Overview of Various Strategies and Promising New Bulk Materials for Potential Thermoelectric Applications. In Thermoelectric Materials 2001-Research and Applications; Nolas, G.S., Johnson, D.C., Mandrus, D.G., Eds.; Cambridge University Press: New York, NY, USA, 2001; Volume 691, pp. 3–14.
[3]
Gordiakova, G.N.; Sinani, S.S. The thermoelectric properties of bismuth telluride with alloying additives. Sov. Phys. Tech. Phys. 1958, 3, 908–911.
[4]
Wright, D.A. Thermoelectric properties of bismuth telluride and its alloys. Nature 1958, 181, 834–834, doi:10.1038/181834a0.
[5]
Goldsmid, H.J. The electrical conductivity and thermoelectric power of bismuth telluride. Proc. Phys. Soc. 1958, 71, 633–646, doi:10.1088/0370-1328/71/4/312.
[6]
Steele, M.C.; Rosi, F.D. Thermal conductivity and thermoelectric power of germanium-silicon alloys. J. Appl. Phys. 1958, 29, 1517–1520, doi:10.1063/1.1722984.
Rowe, D.M.; Bunce, R.W. Thermoelectric properties of heavily doped hot-pressed germanium-silicon alloys. J. Phys. D 1969, 2, 1497.
[9]
Wyrick, R.; Levinstein, H. Thermoelectric voltage in lead telluride. Phys. Rev. 1950, 78, 304–305.
[10]
Putley, E.H. Thermoelectric and galvanomagnetic effects in lead selenide and telluride. Proc. Phys. Soc. 1955, 68, 35–42.
[11]
Kolomoets, N.V.; Stavitskaia, T.S.; Stilbans, L.S. An investigation of the thermoelectric properties of lead selenide and lead telluride. Sov. Phys. Tech. Phys. 1957, 2, 59–66.
[12]
Gershtein, E.Z.; Stavitskaia, T.S.; Stilbans, L.S. A study of the thermoelectric properties of lead telluride. Sov. Phys. Tech. Phys. 1957, 2, 2302–2313.
[13]
Wu, C. Analysis of waste-heat thermoelectric power generators. Appl. Therm. Eng. 1996, 16, 63–69.
[14]
Rowe, D.M.; Min, G. Evaluation of thermoelectric modules for power generation. J. Power Sources 1998, 73, 193–198, doi:10.1016/S0378-7753(97)02801-2.
[15]
Rowe, D.M. Thermoelectrics, an environmentally-friendly source of electrical power. Renew. Energ. 1999, 16, 1251–1256, doi:10.1016/S0960-1481(98)00512-6.
Yang, J.H.; Caillat, T. Thermoelectric materials for space and automotive power generation. MRS Bull. 2006, 31, 224–229, doi:10.1557/mrs2006.49.
[18]
Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461, doi:10.1126/science.1158899.
[19]
Kyratsi, T. Thermoelectric Materials and Applications on the Recovery of Waste Heat Energy. In Proceedings of 7th International Conference of the Balkan Physical Union Vols 1 and 2, New York, NY, USA, 2009; Angelopoulos, A., Fildisis, T., Eds.; pp. 700–705.
[20]
Niu, X.; Yu, J.; Wang, S. Experimental study on low-temperature waste heat thermoelectric generator. J. Power Sources 2009, 188, 621–626.
[21]
Kyratsi, T. Thermoelectric materials and applications on the recovery of waste heat energy. AIP Conf. Proc. 2010, 1203, 700–705, doi:10.1063/1.3322538.
[22]
Telkes, M. Solar thermoelectric generators. J. Appl. Phys. 1954, 25, 765–777.
[23]
Goldsmid, H.J.; Giutronich, J.E.; Kaila, M.M. Solar thermoelectric generation using bismuth telluride alloys. Sol. Energy 1980, 24, 435–440, doi:10.1016/0038-092X(80)90311-4.
[24]
Omer, S.A.; Infield, D.G. Design optimization of thermoelectric devices for solar power generation. Sol. Energ. Mat. Sol. C. 1998, 53, 67–82, doi:10.1016/S0927-0248(98)00008-7.
[25]
Scherrer, H.; Vikhor, L.; Lenoir, B.; Dauscher, A.; Poinas, P. Solar thermolectric generator based on skutterudites. J. Power Sources 2003, 115, 141–148, doi:10.1016/S0378-7753(02)00597-9.
[26]
Zhang, Q.J.; Tang, X.F.; Zhai, P.C.; Niino, M.; Endo, C. Recent development in nano and graded thermoelectric materials. Mater. Sci. Forum 2005, 492–493, 135–140, doi:10.4028/www.scientific.net/MSF.492-493.135.
[27]
Khattab, N.M.; El Shenawy, E.T. Optimal operation of thermoelectric cooler driven by solar thermoelectric generator. Energ. Convers. Manag. 2006, 47, 407–426.
[28]
Tritt, T.M.; Boettner, H.; Chen, L. Thermoelectrics: Direct solar thermal energy conversion. MRS Bull. 2008, 33, 366–368.
[29]
Baxter, J.; Bian, Z.; Chen, G.; Danielson, D.; Dresselhaus, M.S.; Fedorov, A.G.; Fisher, T.S.; Jones, C.W.; Maginn, E.; Kortshagen, U. Nanoscale design to enable the revolution in renewable energy. Energ. Environ. Sci. 2009, 2, 559–588, doi:10.1039/b821698c.
[30]
Jovanovic, V.; Ghamaty, S.; Krommenhoek, D.; Bass, J.C. High Coefficient of Performance Quantum Well Thermoelectric Nano Cooler. In Proceedings of the ASME InterPACK Conference, New York, NY, USA, 2007; pp. 595–601.
Bhattacharya, S.; Ponnambalam, V.; Pope, A.L.; Alboni, P.N.; Xia, Y.; Tritt, T.M.; Poon, S.J. Thermoelectric Properties of Sb-Doping in the TiNiSn1?xSbx Half-Heusler System. In Proceedings of Eighteenth International Conference on Thermoelectrics, Maryland, MD, USA, 1999; pp. 336–339.
[35]
Cook, B.A.; Meisner, G.P.; Yang, J.; Uher, C. High Temperature Thermoelectric Properties of MNiSn (M = Zr,Hf). In Proceedings of Eighteenth International Conference on Thermoelectrics, Maryland, MD, USA, 1999; pp. 64–67.
[36]
Uher, C.; Yang, J.; Hu, S.; Morelli, D.T.; Meisner, G.P. Transport properties of pure and doped MNiSn (M = Zr, Hf). Phys. Rev. B 1999, 59, 8615–8621, doi:10.1103/PhysRevB.59.8615.
[37]
Cook, B.A.; Harringa, J.L.; Tan, Z.S.; Jesser, W.A. TiNiSn: A Gateway to the (1,1,1) Intermetallic Compounds. In Proceedings of Fifteenth International Conference on Thermoelectrics, Pasadena, CA, USA, 1996; pp. 122–127.
[38]
Qiu, P.; Yang, J.; Huang, X.; Chen, X.; Chen, L. Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half-Heusler alloys. Appl. Phys. Lett. 2010, 96, 152105, doi:10.1063/1.3396981.
[39]
Jiang, G.; Xu, J.; Zhao, B.; Yu, C.; Zhu, T.; Zhao, X. Suspension melting preparation of Zr1?xTixNiSn0.975Sb0.025 half-Heusler alloy and its thermoelectric properties. Rare Metal Mat. Eng. 2009, 38, 1831–1834.
[40]
Kimura, Y.; Ueno, H.; Kenjo, T.; Asami, C.; Mishima, Y. Phase Stability and Thermoelectric Properties of Half-Heusler (Ma, Mb)NiSn (Ma, Mb = Hf, Zr, Ti). In Advanced Intermetallic-Based Alloys for Extreme Environment and Energy Applications; Palm, M., Bewlay, B.P., He, Y.H., Takeyama, M., Wiezorek, J.M.K., Eds.; Cambridge University Press: New York, NY, USA, 2009; Volume 1128, pp. 15–20.
[41]
Romaka, V.A.; Fruchart, D.; Romaka, V.V.; Hlil, E.K.; Stadnyk, Y.V.; Gorelenko, Y.K.; Akselrud, L.G. Features of the structural, electrokinetic, and magnetic properties of the heavily doped ZrNiSn semiconductor: Dy acceptor impurity. Semiconductors 2009, 43, 7–13, doi:10.1134/S1063782609010035.
[42]
Katsuyama, S.; Matsuo, R.; Ito, M. Thermoelectric properties of half-Heusler alloys Zr1?xYxNiSn1?ySby. J. Alloy. Compd. 2007, 428, 262–267, doi:10.1016/j.jallcom.2006.02.075.
[43]
Muta, H.; Kanemitsu, T.; Kurosaki, K.; Yamanaka, S. Substitution effect on thermoelectric properties of ZrNiSn based half-Heusler compounds. Mater. Trans. 2006, 47, 1453–1457, doi:10.2320/matertrans.47.1453.
[44]
Muta, H.; Yamaguchi, T.; Kurosaki, K.; Yamanaka, S. Thermoelectric properties of ZrNiSn based half Heusler compounds. IEEE 2005, 339–342.
[45]
Katsuyama, S.; Matsushima, H.; Ito, M. Effect of substitution for Ni by Co and/or Cu on the thermoelectric properties of half-Heusler ZrNiSn. J. Alloy. Compd. 2004, 385, 232–237, doi:10.1016/j.jallcom.2004.02.061.
[46]
Shen, Q.; Zhang, L.M.; Chen, L.D.; Goto, T.; Hirai, T. Synthesis and Sintering of ZrNiSn Thermoelectric Compounds. In Proceedings of 21st International Conference on Thermoelectrics, California, CA, USA, 2002; pp. 166–169.
[47]
Shen, Q.; Chen, L.; Goto, T.; Hirai, T.; Yang, J.; Meisner, G.P.; Uher, C. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl. Phys. Lett. 2001, 79, 4165–4167.
[48]
Zhu, T.J.; Xiao, K.; Yu, C.; Shen, J.J.; Yang, S.H.; Zhou, A.J.; Zhao, X.B.; He, J. Effects of yttrium doping on the thermoelectric properties of Hf0.6Zr0.4NiSn0.98Sb0.02 half-Heusler alloys. J. Appl. Phys. 2010, 108, 044903, doi:10.1063/1.3475719.
[49]
Qiu, P.; Huang, X.; Chen, X.; Chen, L. Enhanced thermoelectric performance by the combination of alloying and doping in TiCoSb-based half-Heusler compounds. J. Appl. Phys. 2009, 106, 103703, doi:10.1063/1.3238363.
[50]
Xie, W.; Jin, Q.; Tang, X. The preparation and thermoelectric properties of Ti0.5Zr0.25Hf0.25Co1?xNixSb half-Heusler compounds. J. Appl. Phys. 2008, 103, 043711, doi:10.1063/1.2885113.
[51]
Wu, T.; Jiang, W.; Li, X.; Zhou, Y.; Chen, L. Thermoelectric properties of p-type Fe-doped TiCoSb half-Heusler compounds. J. Appl. Phys. 2007, 102, 103705, doi:10.1063/1.2809377.
[52]
Zhou, M.; Chen, L.; Feng, C.; Wang, D.; Li, J.-F. Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1?xTaxCoSb. J. Appl. Phys. 2007, 101, 113714.
[53]
Xie, W.-J.; Tang, X.-F.; Zhang, Q.-J. Fast preparation and thermal transport property of TiCoSb-based half-Heusler compounds. Chin. Phys. 2007, 16, 3549–3552.
[54]
Stopa, T.; Tobola, J.; Kaprzyk, S. Residual conductivity and seebeck coefficient calculations in TiCo1?xCuxSb alloys. In Proceedings of 25th International Conference on Thermoelectrics, Vienna, Austria, 2006; p. 4.
[55]
Zhou, M.; Chen, L.D.; Zhang, W.Q.; Feng, C.D. Disorder scattering effect on the high-temperature lattice thermal conductivity of TiCoSb-based half-Heusler compounds. J. Appl. Phys. 2005, 98, 013708, doi:10.1063/1.1944213.
[56]
Zhou, M.; Feng, C.D.; Chen, L.D.; Huang, X.Y. Effects of partial substitution of Co by Ni on the high-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds. J. Alloy. Compd. 2005, 391, 194–197, doi:10.1016/j.jallcom.2004.07.074.
[57]
Sekimoto, T.; Kurosaki, K.; Muta, H.; Yamanaka, S. Thermoelectric properties of (Ti,Zr,Hf)CoSb type half-Heusler compounds. Mater. Trans. 2005, 46, 1481–1484.
[58]
Sekimoto, T.; Kurosaki, K.; Muta, H.; Yamasaka, S. Thermoelectric and thermophysical properties of TiCoSb,ZrCoSb,HfCoSb prepared by SPS. In Proceedings of 24th International Conference on Thermoelectrics, Clemson, SC, USA, 2005; pp. 347–350.
[59]
Zhou, M.; Feng, C.D.; Chen, L.D.; Huang, X.Y. Effects of partial substitution of Co by Ni on the electrical transport properties of TiCoSb-based half-Heusler compounds. Rare Metal Mat. Eng. 2003, 32, 488–490.
[60]
Xia, Y.; Ponnambalam, V.; Bhattacharya, S.; Pope, A.L.; Poon, S.J.; Tritt, T.M. Electrical transport properties of TiCoSb half-Heusler phases that exhibit high resistivity. J. Phys. Condens. Mat. 2001, 13, 77–89.
Poon, S.J.; Tritt, T.M.; Xi, Y.; Bhattacharya, S.; Ponnambalam, V.; Pope, A.L.; Littleton, R.T.; Browning, V.M. Bandgap Features and Thermoelectric Properties of Ti-Based Half-Heusler Alloys. In Proceedings of Eighteenth International Conference on Thermoelectrics, Maryland, MD, USA, 1999; pp. 45–51.
[63]
Tobola, J.; Pierre, J.; Kaprzyk, S.; Skolozdra, R.V.; Kouacou, M.A. Crossover from semiconductor to magnetic metal in semi-Heusler phases as a function of valence electron concentration. J. Phys. Condens. Mat. 1998, 10, 1013–1032, doi:10.1088/0953-8984/10/5/011.
[64]
Kuentzler, R.; Clad, R.; Schmerber, G.; Dossmann, Y. Gap at the fermi level and magnetism in RMSn ternary compounds (R = Ti, Zr, Hf and M=Fe, Co, Ni). J. Magn. Magn. Mater. 1992, 104, 1976–1978, doi:10.1016/0304-8853(92)91629-8.
[65]
Aliev, F.G. Gap at fermi level in some new d-electron and f-electron intermetallic compounds. Physica B 1991, 171, 199–205.
[66]
Aliev, F.G.; Kozyrkov, V.V.; Moshchalkov, V.V.; Scolozdra, R.V.; Durczewski, K. Narrow-band in the intermetallic compounds TiNiSn, ZrNiSn, HfNiSn. Z. Phys. B 1990, 80, 353–357.
[67]
Bhattacharya, S.; Xia, Y.; Ponnambalam, V.; Poon, S.J.; Thadani, N.; Tritt, T.M. Reductions in the Lattice Thermal Conductivity of Ball-Milled and Shock Compacted TiNiSn1?xSbx Half-Heusler Alloys. In Thermoelectric Materials 2001-Research and Applications; Nolas, G.S., Johnson, D.C., Mandrus, D.G., Eds.; Cambridge University Press: New York, NY, USA, 2001; Volume 691, pp. 155–160.
[68]
Tritt, T.M.; Bhattacharya, S.; Xia, Y.; Ponnambalam, V.; Poon, S.J.; Thadhani, N. Effects of Various Grain Structure and Sizes on the Thermal Conductivity of Ti-Based Half-Heusler Alloys. In Thermoelectric Materials 2001-Research and Applications; Nolas, G.S., Johnson, D.C., Mandrus, D.G., Eds.; Cambridge University Press: New York, NY, USA, 2001; Volume 691, pp. 7–12.
[69]
Xie, H.H.; Yu, C.; Zhu, T.J.; Fu, C.G.; Snyder, G.J.; Zhao, X.B. Increased electrical conductivity in fine-grained (Zr,Hf)NiSn based thermoelectric materials with nanoscale precipitates. Appl. Phys. Lett. 2012, 100, 254104.
[70]
Takas, N.J.; Sahoo, P.; Misra, D.; Zhao, H.; Henderson, N.L.; Stokes, K.; Poudeu, P.F.P. Effects of Ir substitution and processing conditions on thermoelectric performance of p-type Zr0.5Hf0.5Co1?xIrxSb0.99sn0.01 half-Heusler alloys. J. Electron. Mater. 2011, 40, 662–669, doi:10.1007/s11664-010-1501-0.
[71]
Yaqub, R.; Sahoo, P.; Makongo, J.P.A.; Takas, N.; Poudeu, P.F.P.; Stokes, K.L. Investigation of the effect of NiO nanoparticles on the transport properties of Zr0.5Hf0.5Ni1?xPdxSn0.99Sb0.01 (x = 0 and 0.2). Sci. Adv. Mater. 2011, 3, 633–638, doi:10.1166/sam.2011.1193.
[72]
Joshi, G.; Yan, X.; Wang, H.; Liu, W.; Chen, G.; Ren, Z. Enhancement in thermoelectric figure-of-merit of an n-type half-Heusler compound by the nanocomposite approach. Adv. Energy Mater. 2011, 1, 643–647.
[73]
Yan, X.; Joshi, G.; Liu, W.; Lan, Y.; Wang, H.; Lee, S.; Simonson, J.W.; Poon, S.J.; Tritt, T.M.; Chen, G.; et al. Enhanced thermoelectric figure of merit of p-type half-Heuslers. Nano Lett. 2011, 11, 556–560.
Zhou, M.; Li, J.F.; Guo, P.J.; Takuji, K. Synthesis and thermoelectric properties of fine-grained FeVSb system half-Heusler compound polycrystals with high phase purity. J. Phys. D 2010, 43, 415403.
[76]
Yu, C.; Zhu, T.-J.; Xiao, K.; Jin, J.; Shen, J.-J.; Yang, S.-H.; Zhao, X.-B. Microstructure of ZrNiSn-base half-Heusler thermoelectric materials prepared by melt-spinning. J. Inorg. Mater. 2010, 25, 569–572.
[77]
Huang, X.Y.; Xu, Z.; Chen, L.D. The thermoelectric performance of ZrNiSn-ZrO2 composites. Solid State Commun. 2004, 130, 181–185, doi:10.1016/j.ssc.2004.02.001.
[78]
Huang, X.Y.; Xu, Z.; Chen, L.D.; Tang, X.F. Effect of γ-Al2O3 content on the thermoelectric performance of ZrNiSn/γ-Al2O3 composites. Key Eng. Mater. 2003, 249, 79–82, doi:10.4028/www.scientific.net/KEM.249.79.
[79]
Xie, W.J.; He, J.; Zhu, S.; Su, X.L.; Wang, S.Y.; Holgate, T.; Graff, J.W.; Ponnambalam, V.; Poon, S.J.; Tang, X.F.; Zhang, Q.J.; Tritt, T,M. Simultaneously optimizing the independent thermoelectric properties in (Ti,Zr,Hf)(Co,Ni)Sb alloy by in situ forming InSb nanoinclusions. Acta Mater. 2010, 58, 4705–4713.
[80]
Makongo, J.P.A.; Misra, D.K.; Zhou, X.; Pant, A.; Shabetai, M.R.; Su, X.; Uher, C.; Stokes, K.L.; Poudeu, P.F.P. Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. J. Am. Chem. Soc. 2011, 133, 18843–18852.
[81]
Jeitschk, W. Transition metal stannides with MgAgAs and MnCu2Al-type structure. Metall. Trans. 1970, 1, 3159.
[82]
Graf, T.; Felser, C.; Parkin, S.S.P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Ch. 2011, 39, 1–50.
Kawano, K.; Kurosaki, K.; Muta, H.; Yamanaka, S. Substitution effect on the thermoelectric properties of p-type half-Heusler compounds: ErNi1?xPdxSb. J. Appl. Phys. 2008, 104, 013714.
[88]
Kimura, Y.; Tanoguchi, T.; Kita, T. Vacancy site occupation by Co and Ir in half-Heusler ZrNiSn and conversion of the thermoelectric properties from n-type to p-type. Acta Mater. 2010, 58, 4354–4361, doi:10.1016/j.actamat.2010.04.028.
[89]
Sekimoto, T.; Kurosaki, K.; Muta, H.; Yamanaka, S. High-thermoelectric figure of merit realized in p-type half-Heusler compounds: ZrCoSnxSb1?x. J. Appl. Phys. 2007, 46, 673–675.
[90]
Culp, S.; Poon, S.J.; Hickman, N.; Tritt, T.M.; Blumm, J. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C. Appl. Phys. Lett. 2006, 88, 042106.
[91]
Sakurada, S.; Shutoh, N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Appl. Phys. Lett. 2005, 86, 2105.
[92]
Dresselhaus, M.S.; Chen, G.; Ren, Z.F.; Dresselhaus, G.; Henry, A.; Fleurial, J.P. New composite thermoelectric materials for energy harvesting applications. JOM 2009, 61, 86–90, doi:10.1007/s11837-009-0058-y.
[93]
Dresselhaus, M.S.; Chen, G.; Ren, Z.F.; McEnaney, K.; Dresselhaus, G.; Fleurial, J.P. The Promise of Nanocomposite Thermoelectric Materials. In Materials and Devices for Thermal-to-Electric Energy Conversion; Yang, J., Nolas, G.S., Koumoto, K., Grin, Y., Eds.; Cambridge University Press: New York, USA, 2009; Volume 1166, pp. 29–41.
[94]
Dresselhaus, M.S.; Chen, G.; Ren, Z.; Fleurial, J.-P.; Gogna, P.; Tang, M.Y.; Vashaee, D.; Lee, H.; Wang, X.; Joshi, G. Nanocomposites to Enhance ZT in Thermoelectrics. In Thermoelectric Power Generation; Hogan, T.P., Yang, J., Funahashi, R., Tritt, T.M., Eds.; Cambridge University Press: New York, NY, USA, 2008; Volume 1044, pp. 29–41.
[95]
Dresselhaus, M.S.; Chen, G.; Tang, M.Y.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J.-P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053, doi:10.1002/adma.200600527.
[96]
Yang, R.G.; Chen, G.; Dresselhaus, M.S. Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction. Phys. Rev. B 2005, 72, 125411, doi:10.1103/PhysRevB.72.125411.
[97]
Yang, R.G.; Chen, G. Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys. Rev. B 2004, 69, 195316, doi:10.1103/PhysRevB.69.195316.
[98]
Harris, T.; Lee, H.; Wang, D.Z.; Huang, J.Y.; Ren, Z.F.; Klotz, B.; Dowding, R.; Dresselhaus, M.S.; Chen, G. Thermal Conductivity Reduction of SiGe Nanocomposites. In Thermoelectric Materials 2003-Research and Applications; Nolas, G.S., Yang, J., Hogan, T.P., Johnson, D.C., Eds.; Cambridge University Press: New York, NY, USA, 2004; Volume 793, pp. 169–174.
[99]
Kanatzidis, M.G. Nanostructured thermoelectrics: The new paradigm? Chem. Mater. 2010, 22, 648–659, doi:10.1021/cm902195j.
[100]
Hochbaum, A.I.; Chen, R.; Delgado, R.D.; Liang, W.; Garnett, E.C.; Najarian, M.; Majumdar, A.; Yang, P. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.
[101]
Pichanusakorn, P.; Bandaru, P. Nanostructured thermoelectrics. Mat. Sci. Eng. R 2010, 67, 19–63.
[102]
Heremans, J.P.; Thrush, C.M.; Morelli, D.T. Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 2004, 70, 115334.
[103]
Kishimoto, K.; Tsukamoto, M.; Koyanagi, T. Temperature dependence of the seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by RF sputtering. J. Appl. Phys. 2002, 92, 5331–5339.
[104]
Nishio, Y.; Hirano, T. Improvement of the efficiency of thermoelectric energy conversion by utilizing potential barriers. J. Appl. Phys. 1997, 36, 170–174.
[105]
Faleev, S.V.; Leonard, F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev. B 2008, 77, 214304.
[106]
Makongo, J.P.A.; Misra, D.K.; Salvador, J.R.; Takas, N.J.; Wang, G.; Shabetai, M.R.; Pant, A.; Paudel, P.; Uher, C.; Stokes, K.L.; et al. Thermal and electronic charge transport in bulk nanostructured Zr0.25Hf0.75NiSn composites with full-Heusler inclusions. J. Solid State Chem. 2011, 184, 2948–2960, doi:10.1016/j.jssc.2011.08.036.
Chen, L.D.; Huang, X.Y.; Zhou, M.; Shi, X.; Zhang, W.B. The high temperature thermoelectric performances of Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 alloy with nanophase inclusions. J. Appl. Phys. 2006, 99, 064305.
[109]
Huang, X.Y.; Chen, L.D.; Shi, X.; Zhou, M.; Xu, Z. Thermoelectric performances of ZrNiSn/C-60 composite. Key Eng. Mater. 2005, 280–283, 385–388, doi:10.4028/www.scientific.net/KEM.280-283.385.
[110]
Poon, S.J.; Wu, D.; Zhu, S.; Xie, W.; Tritt, T.M.; Thomas, P.; Venkatasubramanian, R. Half-Heusler phases and nanocomposites as emerging high-ZT thermoelectric materials. J. Mater. Res. 2011, 26, 2795–2802, doi:10.1557/jmr.2011.329.
[111]
Bhattacharya, S.; Tritt, T.M.; Xia, Y.; Ponnambalam, V.; Poon, S.J.; Thadhani, N. Grain structure effects on the lattice thermal conductivity of Ti-based half-heusler alloys. Appl. Phys. Lett. 2002, 81, 43–45.
[112]
Xie, H.H.; Mi, J.L.; Hu, L.P.; Lock, N.; Chirstensen, M.; Fu, C.G.; Iversen, B.B.; Zhao, X.B.; Zhu, T.J. Interrelation between atomic switching disorder and thermoelectric properties of zrnisn half-Heusler compounds. Crystengcomm 2012, 14, 4467–4471, doi:10.1039/c2ce25119a.
[113]
Yu, C.; Zhu, T.; Xiao, K.; Shen, J.; Zhao, X. Microstructure and thermoelectric properties of (Zr,Hf)NiSn-based half-Heusler alloys by melt spinning and spark plasma sintering. Funct. Mater. Lett. 2010, 3, 227–231.
[114]
Yu, B.; Zebarjadi, M.; Wang, H.; Lukas, K.; Wang, H.; Wang, D.; Opeil, C.; Dresselhaus, M.; Chen, G.; Ren, Z. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett. 2012, 12, 2077–2082.
[115]
Zebarjadi, M.; Joshi, G.; Zhu, G.; Yu, B.; Minnich, A.; Lan, Y.; Wang, X.; Dresselhaus, M.; Ren, Z.; Chen, G. Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett. 2011, 11, 2225–2230.
[116]
Xiong, Z.; Xi, L.; Ding, J.; Chen, X.; Huang, X.; Gu, H.; Chen, L.; Zhang, W. Thermoelectric nanocomposite from the metastable void filling in caged skutterudite. J. Mater. Res. 2011, 26, 1848–1856, doi:10.1557/jmr.2011.90.
[117]
Xiong, Z.; Chen, X.; Huang, X.; Bai, S.; Chen, L. High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Mater. 2010, 58, 3995–4002, doi:10.1016/j.actamat.2010.03.025.
[118]
Eilertsen, J.; Rouvimov, S.; Subramanian, M.A. Rattler-seeded insb nanoinclusions from metastable indium-filled In0.1Co4Sb12 skutterudites for high-performance thermoelectrics. Acta Mater. 2012, 60, 2178–2185, doi:10.1016/j.actamat.2011.12.028.
[119]
Eilertsen, J.; Berthelot, R.; Sleight, A.W.; Subramanian, M.A. Structure and transport behavior of in-filled cobalt rhodium antimonide skutterudites. J. Solid State Chem. 2012, 190, 238–245, doi:10.1016/j.jssc.2012.02.045.
[120]
Chai, Y.W.; Kimura, Y. Nanosized precipitates in half-Heusler TiNiSn alloy. Appl. Phys. Lett. 2012, 100, 033114, doi:10.1063/1.3679377.
[121]
Liu, W.; Tang, X.; Li, H.; Yin, K.; Sharp, J.; Zhou, X.; Uher, C. Enhanced thermoelectric properties of n-type Mg2.16(Si0.4Sn0.6)1?ySby due to nano-sized Sn-rich precipitates and an optimized electron concentration. J. Mater. Chem. 2012, 22, 13653–13661.
[122]
Chen, Z.; Sakamoto, J.; Morelli, D.; Xiaoyuan, Z.; Guoyu, W.; Uher, C. Thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites with FeSb2 nanoinclusions. J. Appl. Phys. 2011, 109, 06372.
[123]
Zhang, S.N.; Zhu, T.J.; Yang, S.H.; Yu, C.; Zhao, X.B. Improved thermoelectric properties of AgSbTe2 based compounds with nanoscale Ag2Te in situ precipitates. J Alloy. Compd. 2010, 499, 215–220, doi:10.1016/j.jallcom.2010.03.170.
Ke, X.; Chen, C.; Yang, J.; Wu, L.; Zhou, J.; Li, Q.; Zhu, Y.; Kent, P.R.C. Microstructure and a nucleation mechanism for nanoprecipitates in PbTe-AgSbTe2. Phys. Rev. Lett. 2009, 103, 145502, doi:10.1103/PhysRevLett.103.145502.
[126]
Xie, W.; He, J.; Kang, H.J.; Tang, X.; Zhu, S.; Laver, M.; Wang, S.; Copley, J.R.D.; Brown, C.M.; Zhang, Q.; et al. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. Nano Lett. 2010, 10, 3283–3289, doi:10.1021/nl100804a.
[127]
Xie, W.; Tang, X.; Yan, Y.; Zhang, Q.; Tritt, T.M. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl. Phys. Lett. 2009, 94, 102111.
[128]
Xie, W.; Tang, X.; Yan, Y.; Zhang, Q.; Tritt, T.M. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys. 2009, 105, 113713, doi:10.1063/1.3143104.
[129]
Li, H.; Tang, X.; Su, X.; Zhang, Q.; Uher, C. Nanostructured bulk YbxCo4Sb12 with high thermoelectric performance prepared by the rapid solidification method. J. Phys. D 2009, 42, 145409, doi:10.1088/0022-3727/42/14/145409.
[130]
Li, H.; Tang, X.; Su, X.; Zhang, Q. Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl. Phys. Lett. 2008, 92, 202114, doi:10.1063/1.2936277.
[131]
Tang, X.; Xie, W.; Li, H.; Zhao, W.; Zhang, Q.; Niino, M. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Appl. Phys. Lett. 2007, 90, 012102.
[132]
Lan, Y.; Minnich, A.J.; Chen, G.; Ren, Z. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 2010, 20, 357–376.
Sharp, J.W.; Poon, S.J.; Goldsmid, H.J. Boundary scattering and the thermoelectric figure of merit. Phys. Status Solidi A 2001, 187, 507–516, doi:10.1002/1521-396X(200110)187:2<507::AID-PSSA507>3.0.CO;2-M.
[137]
Cahill, D.G.; Watson, S.K.; Pohl, R.O. Lower limit to the thermal-conductivity of disordered crystals. Phys. Rev. B 1992, 46, 6131–6140, doi:10.1103/PhysRevB.46.6131.
[138]
Yu, C.; Xie, H.H.; Fu, C.G.; Zhu, T.J.; Zhao, X.B. High performance half-Heusler thermoelectric materials with refined grains and nanoscale precipitates. J. Mater. Res. 2012, 27, 2457–2465, doi:10.1557/jmr.2012.171.
[139]
Liu, W.S.; Yan, X.; Chen, G.; Ren, Z. F. Recent advances in thermoelectric nanocomposites. Nano Energy 2012, 1, 42–56.
[140]
Heremans, J.P.; Jovovic, V.; Toberer, E.S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G.J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554–557.
[141]
Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G.J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69.
[142]
Simonson, J.W.; Wu, D.; Xie, W.J.; Tritt, T.M.; Poon, S.J. Introduction of resonant states and enhancement of thermoelectric properties in half-Heusler alloys. Phys. Rev. B 2011, 83, 235211.