Nanocomposite films consisting of gold inclusions in the polytetrafluoroethylene (PTFE) matrix were obtained by thermal vacuum deposition. Annealing of the obtained films with different temperatures was used to measure varying of film morphologies. The dependence of optical properties of the films on their morphology was studied. It was established that absorption and profile of the nanocomposite film obtained by thermal vacuum deposition can be changed with annealing owing to the fact that different annealing temperatures lead to different average particle sizes. A method to calculate the optical properties of nanocomposite thin films with inclusions of different sizes was proposed. Thus, comparison of experimental optical spectra with the spectra obtained during the simulation enables estimating average sizes of inclusions. The calculations give the possibility of understanding morphological changes in the structures.
Leibowitz, F.L.; Zheng, W.; Maye, M.M.; Zhong, C. Structures and properties of nanoparticle thin film formed via a one-step excange-cross-linking-precipitation route. Anal. Chem. 1999, 71, 5076–5083, doi:10.1021/ac990752f.
[3]
Pradeep, T.; Anshup. Noble metal nanoparticles for water purification: A critical review. Thin Solid Films 2009, 517, 6441–6478.
[4]
Zheludev, N.I. Single nanoparticle as photonic switch and optical memory element. J. Opt. A 2006, 8, S1–S8, doi:10.1088/1464-4258/8/4/S01.
[5]
Pelton, M.; Aizpurua, J.; Bryant, G. Metal-nanoparticleplasmonics. Laser Photonics Rev. 2008, 2, 136–159, doi:10.1002/lpor.200810003.
[6]
Lee, K.-S.; Lee, T.-S.; Kim, W.-M.; Cho, S.; Lee, S. Pump-probe optical switching in Au:SiO2 nanocomposite waveguide film. Appl. Phys. Lett. 2007, 91, 141905:1–141905:3.
[7]
Luo, X.; Morrin, A.; Killard, A.J.; Smith, M.R. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 2006, 18, 319–326, doi:10.1002/elan.200503415.
[8]
Athwale, A.A.; Bhagwat, S.V.; Katre, P.P. Nanocomposite of Pd-polyaniline as a selective methanol sensor. Sens. Actuators 2006, B114, 263–276.
[9]
Park, S.-J.; Lazarides, A.A.; Mirkin, C.A.; Brazis, P.W.; Kannewurf, C.R.; Letsinger, R.L. The electrical properties of gold nanoparticle assemblies linked by DNA. Angew. Chem. Int. Ed. 2000, 39, 3845–3848, doi:10.1002/1521-3773(20001103)39:21<3845::AID-ANIE3845>3.0.CO;2-O.
[10]
Jordan, R.; West, N.; Ulman, A.; Chou, Y.M.; Nuyken, O. Nanocomposites by surface-initiated living cationic polymerization of 2-oxazolines on functionalized gold nanoparticles. Macromolecules 2001, 34, 1606–1611, doi:10.1021/ma001615j.
[11]
Feng, J.; Hu, X.; Yue, P.L. Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of Orange II. Environ. Sci. Technol. 2004, 381, 269–275.
Grytsenko, K.P.; Lytvyn, P.M.; Friedrich, J.; Schulze, R.D.; Schrader, S. Influence of plasma discharge on the structure of polytetrafluoroethylene film and step coverage on polymer substrate. Mater. Sci. Eng. C 2007, 27, 1227–1231, doi:10.1016/j.msec.2006.09.029.
[14]
Gritsenko, K.P. Vacuum evaporation-deposited polyterafluoroethylene films: Growth mechanism, properties, and applications. Russ. J. Gen. Chem. 2009, 52, 112–122.
Lozovski, V. The effective susceptibility concept in the electrodynamics of nano-systems. J. Comput. Theor. Nanosci. 2010, 7, 2077–2093, doi:10.1166/jctn.2010.1588.
[17]
Knittl, Z. Applications of thin films in optics and the principles and methods of their design. P. Soc. Photo-Opt. Inst. 1983, 2, 401.
[18]
Barber, P.W.; Chang, R.K. Optical Effects Associated with Small Particles; World Scientific Pub. Co. Inc.: Singapore, 1988.
[19]
Markel, V.A.; Shalaev, V.M.; Stechel, E.B.; Kim, W.; Armstrong, R.L. Small-particle composites. I. Linear optical properties. Phys. Rev. B 1996, 53, 2425–2436.
[20]
Shalaev, V.M.; Poliakov, E.Y.; Markel, V.A. Small-particle composites. II. Nonlinear optical properties. Phys. Rev. B 1996, 53, 2437–2449.
[21]
Gadomskii, O.N.; Sukhov, S.V. Near-field effect in an ultrathin nonlinear film of resonant atoms. Quantum Electron. 1998, 28, 514–519, doi:10.1070/QE1998v028n06ABEH001261.
[22]
Gao, X.; Glenn, D.W.; Woollam, J.A. In situ ellipsometric diagnostics of multilayer thin film deposition during sputtering. Thin Solid Films 1998, 313, 511–515, doi:10.1016/S0040-6090(97)00875-4.
[23]
Yamamoto, M.; Namioka, T. In situ ellipsometric study of optical properties of ultrathin films. Appl. Opt. 1992, 31, 1612–1621, doi:10.1364/AO.31.001612.
[24]
Khudik, B.I.; Lozovskii, V.Z.; Nazarenko-Baryakhtar, I.V. Macroscopic electrodynamics of ultra-thin films. Phys. Status Solidi B 1989, 153, 167–177, doi:10.1002/pssb.2221530117.
[25]
Zamkovets, A.D.; Kachan, S.M.; Ponyavina, A.N. Optical properties of thin-film metal-dielectric nanocomposites. Phys. Chem. Solid State 2003, 4, 627–631.
[26]
Baraban, L.A.; Lozovski, V.Z. Reflection and absorption of light by a thin semiconductor film. Opt. Spectrosc. 2004, 97, 810–816, doi:10.1134/1.1828633.
[27]
Lozovski, V.; Strilchuk, G.; Khihlovski, S. Light absorption by thin nano-composite films with different distributions of inclusions along film thickness. J. Comput. Theor. Nanosci. 2009, 6, 667–672, doi:10.1166/jctn.2009.1090.
[28]
Born, M.; Wolf, E. Principles of Optics; Pergamon: Oxford, London, UK, 1968.
[29]
Keller, O. Local fields in the electrodynamics of mesoscopic media. Phys. Rep. 1996, 268, 85–262, doi:10.1016/0370-1573(95)00059-3.
[30]
Rallis, S.; Schiffman, G. Theta correspondence associated to G2. Am. J. Math. 1980, 25, 801–849.
[31]
Grytsenko, K.P. Tuning of the optical properties of the gold nanocluster ensemble formed in polytetrafluoroethylene film. Opt. Mem. Neural Netw. 2009, 18, 290–294, doi:10.3103/S1060992X09040079.
[32]
Ristau, R.; Tiruvalam, R.; Clasen, P.I.; Gorskowski, E.P.; Harner, M.P.; Kelly, C.J.; Hussain, I.; Brust, M. Electron microscopy studies of the thermal stability of gold. Gold Bull. 2009, 42, 133–143, doi:10.1007/BF03214923.
[33]
Bozhevolnyi, S.I. Near-field Optics of Nanostructured Surfaces. In Optics of Nanostructured Materials; Markel, V.M., George, T.F., Eds.; Wiley: New York, NY, USA, 2001.
[34]
Bergman, D.J. The dielectric constant of a composite material—A problem in classical physics. Phys. Rep. 1978, 43, 377–407, doi:10.1016/0370-1573(78)90009-1.
[35]
Bergman, D.J.; Stroud, D. Physical properties of macroscopically inhomogeneous media. Solid State Phys. 1992, 46, 147–269, doi:10.1016/S0081-1947(08)60398-7.
[36]
Peiponen, K.E.; Varianen, E.M.; Saarinen, J.J.; Makinen, M.O.A. The dispersion theory of optically linear and nonlinear Bruggeman liquids. Opt. Commun. 2002, 205, 17–24, doi:10.1016/S0030-4018(02)01323-8.
[37]
Lozovski, V.; Sopinskyy, M.; Strilchuk, G. Optical absorption of nano-composite thin films of Au in teflon. Mater. Sci. Appl. 2010, 1, 139–148.
[38]
Venger, E.F.; Goncharenko, A.V.; Dmitruk, M.L. Optics of Small Particles and Disperse Media; Naukova Dumka: Kyiv, Ukraine, 1999.