全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2012 

From Metal Thiobenzoates to Metal Sulfide Nanocrystals: An Experimental and Theoretical Investigation

DOI: 10.3390/nano2020113

Keywords: metal sulfide nanoparticles, thiobenzoates, silver sulfide, copper sulfide, indium sulfide, cadmium sulfide

Full-Text   Cite this paper   Add to My Lib

Abstract:

A simple preparation of metal sulfide nanoparticles via the decomposition of thiobenzoate precursors at room temperature is presented and discussed. Long chain alkylamines were found to mediate the breakdown of metal thiobenzoates, such as those containing Ag, Cu, In and Cd, to produce uniform Ag 2S, Cu 2?xS, In 2S 3 and CdS nanoparticles respectively. The long chain amines are assumed to play dual roles as the nucleophilic reagent and the capping agent. It was found that sizes of the nanoparticles can be controlled by changing the type of amine used, as well as the molar ratio between amine and the precursor. We performed DFT calculations on a proposed mechanism involving an initial nucleophilic addition of amine molecule onto the thiocarboxylates. The proposed reaction was also confirmed through the analysis of by-products via infrared spectroscopy. On the basis of this understanding, we propose to manipulate the stability of the precursors by coordination with suitable stabilizing groups, such that the reaction kinetics can be modified to generate different nanostructures of interest.

References

[1]  Wang, Y. Nonlinear optical properties of nanometer-sized semiconductor clusters. Acc. Chem. Res. 1991, 24, 133–139, doi:10.1021/ar00005a002.
[2]  Hirai, T.; Shiojiri, S.; Komasawa, I. Preparation of metal sulfide composite ultrafine particles in reverse micellar systems and their photocatalytic property. Chem J. Eng. Jpn 1994, 27, 590–597, doi:10.1252/jcej.27.590.
[3]  Beecroft, L.L.; Ober, C.K. Nanocomposite materials for optical applications. Chem. Mater. 1997, 9, 1302–1317, doi:10.1021/cm960441a.
[4]  Rothschild, A.; Komem, Y.; Ashkenasy, N. Quantitative evaluation of chemisorption processes on semiconductors. J. Appl. Phys. 2002, 92, 7090–7097, doi:10.1063/1.1519946.
[5]  Xu, C.; Zhang, Z.; Ye, Q. A novel facile method to metal sulfide (metal = Cd, Ag, Hg) nano-crystallite. Mater. Lett. 2004, 58, 1671–1676, doi:10.1016/j.matlet.2003.11.005.
[6]  Du, W.; Qian, X.; Ma, X.; Gong, Q.; Cao, H.; Yin, J. Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets. Chem. Eur. J. 2007, 13, 3241–3247, doi:10.1002/chem.200601368.
[7]  Ludolph, B.; Malik, M.A.; O’Brien, P.; Revaprasadu, N. Novel single molecule precursor routes for the direct synthesis of highly monodispersed quantum dots of cadmium or zinc sulfide or selenide. Chem. Commun. 1998, 1849–1850.
[8]  Revaprasadu, N.; Malik, M.A.; O’Brien, P.; Wakefield, G. Deposition of zinc sulfide quantum dots from a single-source molecular precursor. J. Mater. Res. 1999, 14, 3237–3240, doi:10.1557/JMR.1999.0437.
[9]  Jun, Y.W.; Lee, S.M.; Kang, N.J.; Cheon, J. Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J. Am. Chem. Soc. 2001, 123, 5150–5151.
[10]  Malik, M.A.; Revaprasadu, N.; O’Brien, P. Air-stable single-source precursors for the synthesis of chalcogenide semiconductor nanoparticles. Chem. Mater. 2001, 13, 913–920, doi:10.1021/cm0011662.
[11]  Barrelet, C.J.; Wu, Y.; Bell, D.C.; Lieber, C.M. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. J. Am. Chem. Soc. 2003, 125, 11498–11499.
[12]  Boudjouk, P.; Jarabek, B.R.; Simonson, D.L.; Seidler, D.J.; Grier, D.G.; McCarthy, G.J.; Keller, L.P. Metal bis(benzylthiolates): Efficient single source precursors to solid solutions and nanoparticles of metal sulfides. Chem. Mater. 1998, 10, 2358–2364, doi:10.1021/cm970669d.
[13]  Zou, J.; Zhang, J.; Zhang, B.; Zhao, P.; Huang, K. Low-temperature synthesis of copper sulfide nano-crystals of novel morphologies by hydrothermal process. Mater. Lett. 2007, 61, 5029–5032.
[14]  Sastry, P.U.; Dutta, D.P. Fractal characteristics of nanocrystalline indium and gallium sulfide particles. J. Alloys Compd. 2009, 487, 351–353, doi:10.1016/j.jallcom.2009.07.138.
[15]  Trindade, T.; O’Brein, P.; Zhang, X. Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach. Chem. Mater. 1997, 9, 523–530, doi:10.1021/cm960363r.
[16]  Jun, Y.W.; Choi, C.S.; Cheon, J. Size and shape controlled ZnTe nanocrystals with quantum confinement effect. Chem. Commun. 2001, 101–102.
[17]  Nair, P.S.; Radhakrishnan, T.; Revaprasadu, N.; Kolawole, G.; O’Brien, P. Cadmium ethylxanthate: A novel single-source precursor for the preparation of CdS nanoparticles. J. Mater. Chem. 2002, 12, 2722–2725.
[18]  Li, Y.; Li, X.; Yang, C.; Li, Y. Controlled synthesis of CdS nanorods and hexagonal nanocrystals. J. Mater. Chem. 2003, 13, 2641–2648, doi:10.1039/b307594j.
[19]  Pradhan, N.; Efrima, S. Single-precursor, one-pot versatile synthesis under near ambient conditions of tunable, single and dual band fluorescing metal sulfide nanoparticles. J. Am. Chem. Soc. 2003, 125, 2050–2051, doi:10.1021/ja028887h.
[20]  Chaturvedi, J.; Singh, S.; Bhattacharya, S.; Noth, H. The chemistry of cadmium thiocarboxylate derivatives: Synthesis, structural features, and application as single source precursors for ternary sulfides. Inorg. Chim. Acta 2011, 50, 10056–10069, doi:10.1021/ic200927w.
[21]  Vittal, J.J.; Ng, M.T. Chemistry of metal thio- and selenocarboxylates: Precursors for metal sulfide/selenide materials, thin films, and nanocrystals. Acc. Chem. Res. 2006, 39, 869–877, doi:10.1021/ar050224s.
[22]  Lim, W.P.; Zhang, Z.H.; Low, H.Y.; Chin, W.S. Preparation of Ag2S nanocrystals of predictable shape and size. Angew. Chem. Int. Ed. 2004, 43, 5685–5689, doi:10.1002/anie.200460566.
[23]  Lim, W.P.; Wong, C.T.; Ang, S.L.; Low, H.Y.; Chin, W.S. Phase-selective synthesis of copper sulfide nanocrystals. Chem. Mater. 2006, 18, 6170–6177.
[24]  Lim, W.P.; Low, H.Y.; Chin, W.S. From winter snowflakes to spring blossoms: Manipulating the growth of copper sulfide dendrites. Cryst. Growth Des. 2007, 7, 2429–2435, doi:10.1021/cg0604125.
[25]  Savant, V.V.; Gopalakrishnan, J.; Patel, C.C. Metal monothiobenzoates. Inorg. Chem. 1970, 9, 748–751, doi:10.1021/ic50086a011.
[26]  Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.
[27]  Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652, doi:10.1063/1.464913.
[28]  Dunning, T.H., Jr.; Hay, P.J. Modern Theoretical Chemistry; Schaefer, H.F., III., Ed.; Plenum Press: New York, NY, USA, 1977; pp. 1–28.
[29]  Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283, doi:10.1063/1.448799.
[30]  Wadt, W.R.; Hay, P.J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298, doi:10.1063/1.448800.
[31]  Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310, doi:10.1063/1.448975.
[32]  Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Zakrzewski, V.G.; Montgomery, J.A.; Stratmann, R.E., Jr.; Burant, J.C.; et al. Gaussian 98; Gaussian, Inc.: Pittsburgh, PA, USA, 1998.
[33]  Nyman, M.D.; Hampden-Smith, M.J.; Duesler, E.N. Synthesis, characterization, and reactivity of group 12 metal thiocarboxylates, M(SOCR)2Lut2 [M = Cd, Zn; R = CH3, C(CH3)3; Lut = 3,5-Dimethylpyridine (Lutidine)]. Inorg. Chem. 1997, 36, 2218–2224.
[34]  Akamatsu, K.; Takei, S.; Mizuhata, M.; Kajinami, A.; Deki, S.; Takeoka, S.; Fujii, M.; Hayashi, S.; Yamamoto, K. Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Films 2000, 359, 55–60.
[35]  Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F. Handbook of X-ray Photoelectron Spectroscopy, 1st; Muilenberg, G.E., Ed.; Perkin-Elmer: Waltham, MA, USA, 1979.
[36]  Harrison, W.A. Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond; W. H. Freeman and Company: San Francisco, CA, USA, 1980.
[37]  Dalas, E.; Sakkopoulos, S.; Vitoratos, E.; Maroulis, G.; Kobotiatis, L. Aqueous precipitation and electrical properties of In2S3: Characterization of the In2S3/polyaniline and In2S3/polypyrrole heterojunctions. J. Mater. Sci. 1993, 28, 5456–5460, doi:10.1007/BF00367815.
[38]  John, T.T.; Bini, S.; Kashiwaba, Y.; Abe, T.; Yasuhiro, Y.; Kartha, C.S.; Vijayakumar, K.P. Characterization of spray pyrolysed indium sulfide thin films. Semicond. Sci. Technol. 2003, 18, 491–500, doi:10.1088/0268-1242/18/6/317.
[39]  Buecheler, S.; Corica, D.; Guettler, D.; Chirila, A.; Verma, R.; Müller, U.; Niesen, T.P.; Palm, J.; Tiwari, A.N. Ultrasonically sprayed indium sulfide buffer layers for Cu(In,Ga)(S,Se)2 thin-film solar cells. Thin Solid Films 2009, 517, 2312–2315, doi:10.1016/j.tsf.2008.10.135.
[40]  Ahluwalia, V.K.; Parashar, R.K. Organic Reaction Mechanisms, 1st ed.; Alpha Science International, Ltd.: Pangbourne, UK, 2002.
[41]  Pavia, D.L.; Lampman, G.M.; Kriz, G.S. Introduction to Spectroscopy: A Guide for Students of Organic Chemistry, 3rd ed.; Harcourt College Publishers: Fort Worth, NY, USA, 2001.
[42]  Yin, F.; Ling, Q.; Kang, E.T.; Chin, W.S. Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore. Unpublished work, 2012.
[43]  Yu, W.W.; Peng, X.G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem. 2002, 41, 2368–2371, doi:10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G.
[44]  Yu, W.W.; Wang, Y.A.; Peng, X. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystal. Chem. Mater. 2003, 15, 4300–4308, doi:10.1021/cm034729t.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133