In order to study and develop an economical solution to environmental pollution in water, a wide variety of materials have been investigated. Natural zeolites emerge from that research as the best in class of this category. Zeolites are natural materials which are relatively abundant and non biodegradable, economical and serve to perform processes of environmental remediation. This paper contains a full description of a new method to characterize the superficial properties of natural zeolites of exotic provenience (Caribbean Islets) with atomic force microscopy (AFM). AFM works with the simplicity of the optical microscope and the high resolution typical of a transmission electron microscope (TEM). If the sample is conductive, structural information of mesoporous material is obtained using scanning and transmission electron microscopy (SEM and TEM), otherwise the sample has to be processed through the grafitation technique, but this procedure induces errors of topography. Therefore, the existing AFM method, to observe zeolite powders, is made in a liquid cell-head scanner. This work confirms that it is possible to use an ambient air-head scanner to obtain a new kind of microtopography. Once optimized, this new method will allow investigation of organic micelles, a very soft nanostructure of cetyltriammonium bromide (CTAB), upon an inorganic surface such as natural zeolites. The data also demonstrated some correlation between SEM microphotographies and AFM 3D images.
References
[1]
London, UK. Available online:. Available online: http://www.iza-online.org/ (accessed on 2 March 2012).
[2]
Sabová, L.; Chmielewská, E. Contemporary and prospects for new generation of environmental nanocomposed zeoadsorbents. Petrol. Coal 2005, 47, 6–9.
[3]
Yamamoto, S.; Matsuoka, O.; Sugiyama Ono, S. Surface structures of zeolites studied by atomic force microscopy. Micropor. Mesopor. Mater. 2001, 48, 103–110, doi:10.1016/S1387-1811(01)00365-1.
[4]
Honda, T.; Matsuoka, O.; Yamamoto, S.; Sugiyama, S. Surface structure of synthesized mordenite crystsal studied by atomic force microscopy. Surf. Sci. 1997, 377, 140–144, doi:10.1016/S0039-6028(96)01346-5.
[5]
Biederma, R.R.; Warzywoda, J.; Bazzana, S.; Dumrul, S. Imaging of crystal growth-induced fine surface features in zeolite A by atomic force microscopy. Micropor. Mesopor. Mater. 2002, 54, 79–88, doi:10.1016/S1387-1811(02)00354-2.
[6]
Miyamoto, A.; Kubo, M.; Oumi, Y.; Tsujimichi, K.; Masaharu, K. Ambient atomic force microscopy images of stilbite and their interpretation by molecular simulations. Appl. Surf. Sci. 1997, 121, 543–547, doi:10.1016/S0169-4332(97)00363-2.
[7]
Parker, S.C.; Higgins, J.O.; Titiloye, J.O.; Slater, B. Atomistic simulation of zeolite surfaces.. Curr. Opin. Solid St. M. 2001, 5, 417–424, doi:10.1016/S1359-0286(01)00039-0.
[8]
Blank, D.H.A.; Chowdhury, S.R.; Sekuli, J.; Abadal, C.R.; Elshof, J.E. Transport mechanisms of water and organic solvents through microporous silica in the pervaporation of binary liquids. Micropo. Mesopor. Mater. 2003, 65, 197–208, doi:10.1016/j.micromeso.2003.08.010.
[9]
Yaghi, O.M.; Li, H.; Eddaoudi, M. Highly porous and stable metal-organic frameworks: structure design and sorption properties. J. Am. Chem. Soc. 2000, 122, 1391–1397.
Robert, B.S.; Li, Z.H. Sorption of perchloroethylene by surfactant-modified zeolite as controlled by surfactant loading. Environ. Sci. Technol. 1998, 32, 2278–2282, doi:10.1021/es971118r.
[12]
Mittal, K.L. Micellizzation,Solubilization and Microemulsions; Plenum Press: New York, NY, USA, 1980.
[13]
Xing, B.; Pignatello, J.J. Mechanism of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 1996, 30, 1–11, doi:10.1021/es940683g.
[14]
Gerber, C.; Quate, C.F.; Binning, G. Atomic force microscope. Phys. Rev. Lett. 1986, 59, 930–933.
[15]
Gu, M.; Masaharu, K. Atomic force microscopy images of MgO (100) and TiO2 (110) under water and aqueous aromatic molecule solutions. Appl. Surf. Sci. 1997, 120, 125–128, doi:10.1016/S0169-4332(97)00227-4.
[16]
Gu, N.; Li, Y.J.; Komiyama, M. In situ observations of tetraamineplatinum(II) hydroxide adsorption from its aqueous solution on heulandite (010) surface by atomic force microscopy. Appl. Sur. Sci. 2004, 237, 504–509, doi:10.1016/j.apsusc.2004.06.114.
[17]
Slater, B.; Mistry, M.; Shoaee, M.; Agger, J.R. Crystal growth of analcime studied by AFM and atomic simulation. J. Cryst. Growth 2006, 294, 78–82, doi:10.1016/j.jcrysgro.2006.05.075.
[18]
Hisakazu, N.; Banno, Y.; Honda, T.; Kohmura, K.; Matsuoka, O.; Sugiyama, S.; Yamamoto, S. Dissolution of zeolite in acidic and alkaline aqueous solutions as revealed by AFM imaging. J. Phys. Chem. 1996, 100, 18474–18482, doi:10.1021/jp961583v.
[19]
Kobayashi, T.; Okada, G.; Gu, M.; Komiyama, M. Adlayer formation of DNA base cytosine over natural zeolite heulandite (010) surface by AFM. Appl. Phys. A Mater. 1998, 66, 635–637, doi:10.1007/s003390051214.
[20]
Sun, S.; Yang, Z.; Yu, L.; Jiang, Y. Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2. Appl. Surf. Sci. 2005, 252, 1410–1416, doi:10.1016/j.apsusc.2005.02.111.
[21]
Victor, H.L.; Pedro, B.; Sergio, C.; Claudio, F.R.; Jorge, M.V. Influence of surfactants on the roughness of titania sol–gel films. Mater. Charact. 2007, 58, 233–242, doi:10.1016/j.matchar.2006.04.021.
[22]
Veeco-Digital Instruments, New York, NY, USA. Available online: http://www.veeco.com/ (accessed on 2 March 2012).