全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2012 

Wettability of Y2O3: A Relative Analysis of Thermally Oxidized, Reactively Sputtered and Template Assisted Nanostructured Coatings

DOI: 10.3390/nano2010065

Keywords: yttrium oxide, cadmium oxide, sputtering, template assisted growth, wettability, work of adhesion, thermal oxidation, surface roughness

Full-Text   Cite this paper   Add to My Lib

Abstract:

The wettability of reactively sputtered Y 2O 3, thermally oxidized Y-Y 2O 3 and Cd-CdO template assisted Y 2O 3 coatings has been studied. The wettability of as-deposited Y 2O 3 coatings was determined by contact angle measurements. The water contact angles for reactively sputtered, thermally oxidized and template assisted Y 2O 3 nanostructured coatings were 99°, 117° and 155°, respectively. The average surface roughness values of reactively sputtered, thermally oxidized and template assisted Y 2O 3 coatings were determined by using atomic force microscopy and the corresponding values were 3, 11 and 180 nm, respectively. The low contact angle of the sputter deposited Y 2O 3 and thermally oxidized Y-Y 2O 3 coatings is attributed to a densely packed nano-grain like microstructure without any void space, leading to low surface roughness. A water droplet on such surfaces is mostly in contact with a solid surface relative to a void space, leading to a hydrophobic surface (low contact angle). Surface roughness is a crucial factor for the fabrication of a superhydrophobic surface. For Y 2O 3 coatings, the surface roughness was improved by depositing a thin film of Y 2O 3 on the Cd-CdO template (average roughness = 178 nm), which resulted in a contact angle greater than 150°. The work of adhesion of water was very high for the reactively sputtered Y 2O 3 (54 mJ/m 2) and thermally oxidized Y-Y 2O 3 coatings (43 mJ/m 2) compared to the Cd-CdO template assisted Y 2O 3 coating (7 mJ/m 2).

References

[1]  Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994, doi:10.1021/ie50320a024.
[2]  Baxter, S.; Cassie, A.B.D. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551, doi:10.1039/tf9444000546.
[3]  Chatelain, F.; Delapierre, G.; Obeid, P.; Pegon, P.; Getin, S.; Brachet, A.G.; Fouque, B. Improvement of yeast biochip sensitivity using multilayer inorganic sol-gel substrates. Biosens. Bioelectron. 2007, 22, 2151–2157, doi:10.1016/j.bios.2006.09.036. 17085034
[4]  Galvin, P.; Wood, T.; Rawely, O.; Moore, E. Monitoring of cell growth in vitro using biochips packaged with indium tin oxide sensors. Sens. Actuator. B Chem. 2009, 139, 187–193, doi:10.1016/j.snb.2008.11.025.
[5]  Ohab, M.; Gotou, T.; Hirata, M. Thin-film particles of graphite oxide. 2: Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits. Carbon 2005, 43, 503–510, doi:10.1016/j.carbon.2004.10.009.
[6]  Wang, M.; Han, S.; Peng, R.; Guo, Y.; Geng, H. A facile route for preparation of conjugated polymer functionalized inorganic semiconductors and direct application in hybrid photovoltaic devices. Solar Energy Mater. Solar Cells 2010, 94, 1293–1299, doi:10.1016/j.solmat.2010.03.036.
[7]  Passacantando, M.; Santucci, S.; Cantalini, C.; Sberveglieri, G.; Comini, E.; Wlodarski, W.; Li, Y.X.; Galatsis, K. Comparison of single and binary oxide MoO3, TiO2 and WO3 sol-gel sensors. Sens. Actuator. B Chem. 2002, 83, 276–280, doi:10.1016/S0925-4005(01)01072-3.
[8]  Lamdhade, G.T.; Yawale, S.S.; Yawale, S.P. Tin oxide and zinc oxide based doped humidity sensors. Sens. Actuator. A 2007, 135, 388–393, doi:10.1016/j.sna.2006.08.001.
[9]  Li, H.D.; Sun, X.D.; Wu, X.H.; Ma, C.L.; Wang, Y.D. Electrical and gas-sensing properties of mesostructured tin oxide-based H2 sensors. Sens. Actuator. B Chem. 2002, 85, 270–276, doi:10.1016/S0925-4005(02)00131-4.
[10]  Akins, D.L.; Stevens, N. Dye-doped inorganic/organic composite films as fluorescence sensors for methanol vapor. Sens. Actuator. B Chem. 2007, 123, 59–64, doi:10.1016/j.snb.2006.07.021.
[11]  Basu, S.; Saha, H.; Basu, P.K.; Bhattacharyya, P. Fast response methane sensor using nanocrystalline zinc oxide thin films derived by sol–gel method. Sen. Actuator. B Chem. 2007, 124, 62–67, doi:10.1016/j.snb.2006.11.046.
[12]  Yi, J.; Kwak, D.J.; Lim, D.G. Improved interface properties of yttrium oxide buffer layer on silicon substrate for ferroelectric random access memory applications. Thin Solid Films 2002, 422, 150–154, doi:10.1016/S0040-6090(02)00846-5.
[13]  Shiratori, S.; Fujimoto, K.; Kim, J.; Ogawa, T.; Ding, B. Fabrication of a superhydrophobic nanofibrous zinc oxide film surface by electro-spinning. Thin Solid Films 2008, 516, 2495–2501, doi:10.1016/j.tsf.2007.04.086.
[14]  Yan, H.; Song, X.; Zhang, X. H.; Li, E.; Wang, B.; Pei, M. D. The fabrication of superhydrophobic copper films by a low-pressure-oxidation method. Appl. Surf. Sci. 2010, 256, 5824–5827, doi:10.1016/j.apsusc.2010.03.039.
[15]  Liu, W.; Hao, J.; Zhou, F.; Guo, Z. Stable biomimetic superhydrophobic engineering materials. J. Am. Chem. Soc. 2005, 127, 15670–15671, doi:10.1021/ja0547836. 16277486
[16]  Gogolides, E.; Tserepi, A.; Papageorgiou, D.; Tsougeni, K. “Smart” polymeric microfluidics fabricated by plasma processing: Controlled wetting, capillary filling and hydrophobic valving. Lab Chip 2010, 10, 462–469, doi:10.1039/b916566e. 20126686
[17]  Jiang, L.; Zhai, J.; Feng, X. The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew. Chem. Int. Ed. 2005, 44, 5115–5118, doi:10.1002/anie.200501337.
[18]  Nistchke, M.; Motornov, M.; Muller, M.; Minko, S. Two-level structured self-adaptive surfaces with reversibly tunable properties. J. Am. Chem. Soc. 2003, 125, 3896–3900, doi:10.1021/ja0279693. 12656624
[19]  Jiang, L.; Gao, X.; Feng, L.; Sun, T. Bio-inspired surfaces with special wettability. Acc. Chem. Res. 2005, 38, 644–652, doi:10.1021/ar040224c. 16104687
[20]  Jiang, L.; Yao, J.; Feng, X.; Wang, S. Controlling wettability and photochromism in a dual-responsive tungsten oxide film. Angew. Chem. Int. Ed. 2006, 45, 1264–1267, doi:10.1002/anie.200502061.
[21]  Lkkala, O.; Ras, R.H.A.; Ritala, M.; Lindstrom, T.; Ankerfors, M.; Kemell, M.; Pore, V.; Sainio, J.; Ruokolainen, J.; Nykanen, A.; Houbenov, N.; Silvennoinen, R.J.; Kettunen, M. Photoswitchable superabsorbency based on nanocellulose aerogels. Adv. Funct. Mater. 2011, 21, 510–517, doi:10.1002/adfm.201001431.
[22]  Ras, R.H.; Karppinen, M.; Sahramo, E.; Malm, J. A photo-controlled wettability switching by conformal coating of nanoscale topographies with ultrathin oxide films. Chem. Mater. 2010, 22, 3349–3352, doi:10.1021/cm903831c.
[23]  Popov, D.; Thielsch, R.; Atanassov, G. Optical properties of TiO2, Y2O3, and CeO2 thin films deposited by electron beam evaporation. Thin Solid Films 1993, 223, 288–292, doi:10.1016/0040-6090(93)90534-V.
[24]  Perriere, J.; Pailloux, F.; Gaboriaud, R.J. Pulsed laser deposition of Y2O3 thin film on MgO. Appl. Surf. Sci. 2002, 186, 477–482, doi:10.1016/S0169-4332(01)00749-8.
[25]  Kennedy, I.M.; Guo, B.; Dosev, D. Photoluminescence of Eu3 + : Y2O3 as an indication of crystal structure and particle size in nanoparticles synthesized by flame spray pyrolysis. J. Aerosol Sci. 2006, 37, 402–412, doi:10.1016/j.jaerosci.2005.08.009.
[26]  Garcia, M.; Guasti, M.F.; Diamant, R.; Poniatowski, E.H.; Alonso, J.C. Photoluminescent thin films of terbium chloride-doped yttrium oxide deposited by the pulsed laser ablation technique. Thin Solid Films 1997, 303, 76–83, doi:10.1016/S0040-6090(97)00136-3.
[27]  Bose, A.C.; Joseyphus, R.J.; Elanchezhiyan, J.; Yogamalar, N.R.; Srinivasan, R. Structural and optical properties of europium doped yttrium oxide nanoparticles for phosphor applications. J. Alloys Compd. 2010, 496, 472–477, doi:10.1016/j.jallcom.2010.02.083.
[28]  Srikumar, S.R.; Mahalingam, T.; Auluck, S. Controlled synthesis, optical and electronic properties of Eu3+ doped yttrium oxysulfide (Y2O2S) nanostructures. J. Colloid Interface Sci. 2009, 336, 889–897, doi:10.1016/j.jcis.2009.04.042. 19473664
[29]  Mugnier, J.; Garapon, C.; Perriere, J.; Millon, E.; Viana, B.; Aschehoug, P.; Fidancev, E.A.; Huignard, A.; Moll, O.P.Y. Eu3+and Tm3+ doped yttrium oxide thin films for optical applications. J. Luminesc 2000, 87–89.
[30]  Fu, L.; Tanner, P.A. Morphology of Y2O3: Eu3+ prepared by hydrothermal synthesis. Chem. Phys. Lett. 2009, 470, 75–79, doi:10.1016/j.cplett.2009.01.023.
[31]  Muroga, T.; Terai, T.; Koch, F.; Maier, H.; Suzuki, A.; Sawada, A. Fabrication of yttrium oxide and erbium oxide coatings by PVD methods. Fusion Eng. Des. 2005, 75, 737–740, doi:10.1016/j.fusengdes.2005.06.050.
[32]  Xianping, F.; Pengyue, Z.; Shizhu, Z.; Zhanglian, H.; Huang, G. Synthesis of yttrium oxide nanocrystal via solvothermal process. J. Rare Earths 2006, 24, 47–50, doi:10.1016/S1002-0721(07)60319-6.
[33]  Tudoran, L.B.; Grecu, R.; Popovici, E.J.; Muresan, L. Studies on the synthesis of europium activated yttrium oxide by wet-chemical method: 1. Influence of precursor quality on phosphor photoluminescence properties. J. Alloys Compd. 2009, 471, 421–427, doi:10.1016/j.jallcom.2008.03.100.
[34]  Paumier, F.; Guerin, P.; Pailloux, F.; Gaboriaud, R.J. Yttrium oxide thin films, Y2O3, grown by ion beam sputtering on Si. J. Phys. D Appl. Phys. 2000, 33, 2884–2889, doi:10.1088/0022-3727/33/22/304.
[35]  Shih, I.; Yip, L.S. Studies of yttrium oxide films prepared by magnetron sputtering. Electron. Lett. 1988, 24, 1287–1288, doi:10.1049/el:19880877.
[36]  Dai, B.; Lei, P.; Tian, G.; Han, J.; Weng, Y.; Shen, W.; Zhu, Y.; Zhu, J. Growth and characterization of yttrium oxide films by reactive magnetron sputtering. Thin Solid Films 2011, 519, 4894–4898, doi:10.1016/j.tsf.2011.01.049.
[37]  Qian, Y.; Liu, X.; Zhang, S.; Li, S.; Liu, Z.; Tang, Q. Synthesis of yttrium hydroxide and nanotubes. J. Cryst. Growth 2003, 259, 208–214, doi:10.1016/S0022-0248(03)01590-2.
[38]  Pengyue, Z.; Lixia, P.; Qichao, Z.; Zhanglian, H.; Zhenxiu, X. Preparation and luminescence properties of Y2O3: Eu3+ nanorods via post annealing process. J. Rare Earths 2006, 24, 111–114, doi:10.1016/S1002-0721(07)60336-6.
[39]  Rajam, K.S.; Barshilia, H.C. Sputter deposited nanometric multi-scale rough Cd-CdO superhydrophobic thin films. Nanosci. Nanotechnol. Lett. 2011, 3, 300–305, doi:10.1166/nnl.2011.1185.
[40]  Beny, J.M.; Husson, E.; Proust, C.; Repelin, Y. Vibrational spectroscopy of the C-form of yttrium sesquioxide. J. Solid State Chem. 1995, 118, 163–169, doi:10.1006/jssc.1995.1326.
[41]  Yoshimura, M.; Kakihana, M.; Lee, J.H.; Yashima, M. Raman spectral characterization of existing phase in the Y2O3-Nb2O5 system. J. Phys. Chem. Solids 1997, 58, 1593–1597, doi:10.1016/S0022-3697(97)00098-X.
[42]  Yalamanchili, M.R.; Drelich, J.; Veeramasuneni, S.; Miller, J.D. Effect of roughness determined by atomic force microscopy on the wetting properties of PTFE thin films. Polym. Eng. Sci. 1996, 36, 1849–1855, doi:10.1002/pen.10580.
[43]  Rajam, K.S.; Devi, L.M.; Pillai, N.; Selvakumar, N.; Barshilia, H.C. Wettability of ZnO: A comparison of reactively sputtered; thermally oxidized and vacuum annealed coating. Appl. Surf. Sci. 2011, 257, 4410–4417, doi:10.1016/j.apsusc.2010.12.075.
[44]  Rajam, K.S.; Barshilia, H.C.; Selvakumar, N. Effect of substrate roughness on the surface free energy of sputter deposited superhydrophobic polytetrafluoroethylene coatings: A comparison of experimental data with different theoretical models. J. Appl. Phys. 2010, 108, 013505:1–013505:9.
[45]  Cazin, A.A.; Arnthal, M.; Zeuner, G. Theorie Mechanique De La Chaleur, Avec Ses Applications Aux Machines; Gauthier-Villars: Paris, France, 1869; pp. 1828–1907.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133