全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improvement of Sparse Matrix-Vector Multiplication on GPU
GPU上稀疏矩阵与矢量乘积运算的一种改进

Keywords: GPU,sparse matrix,CSR,CUDA
GPU
,稀疏矩阵,CSR,CUDA

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sparse Matrix-vector multiplication (SpMV) is one of the most frequently used kernels in engineering practice and scientific computing. With the growth of the scale matrix, a large number of calculations restrict the performance of system, so SpMV can be accelerated by utilizing the high computing power of GPU. In this paper, the problem of existing SpMV on GPU is analyzed. Besides, row partition optimization and float4 optimization are designed. Experimental results demonstrate that the proposed approach can enhance the performance by 2-8 times.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133