The polymer nanocomposite used in this work comprises elastomer poly(dimethylsiloxane) (PDMS) as a polymer matrix and multi-walled carbon nanotubes (MWCNTs) as a conductive nanofiller. To achieve uniform distribution of carbon nanotubes within the polymer, an optimized dispersion process was developed, featuring a strong organic solvent—chloroform, which dissolved PDMS base polymer easily and allowed high quality dispersion of MWCNTs. At concentrations as high as 9 wt.%, MWCNTs were dispersed uniformly through the polymer matrix, which presented a major improvement over prior techniques. The dispersion procedure was optimized via extended experimentation, which is discussed in detail.
References
[1]
Kang, I.; Schulz, M.J.; Kim, J.H.; Shanov, V.; Shi, D. A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 2006, 15, 737–748, doi:10.1088/0964-1726/15/3/009.
[2]
Pham, G.T.; Park, Y.-B.; Liang, Z.; Zhang, C.; Wang, B. Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos. Part B 2008, 39, 209–216, doi:10.1016/j.compositesb.2007.02.024.
[3]
Zhang, W.; Suhr, J.; Koratkar, N. Carbon nanotube/polycarbonate composites as multifunctional strain sensors. J. Nanosci. Nanotechnol. 2006, 6, 960–964, doi:10.1166/jnn.2006.171.
[4]
Umbrecht, F.; Wendlandt, M.; Juncker, D.; Hierold, C.; Neuenschwander, J. A Wireless Implantable Passive Strain Sensor System. In Proceedings of the 2005 IEEE Sensors Conference, Irvine, CA, USA, 2005; pp. 20–23.
[5]
Liu, Y.; Chakrabartty, S.; Gkinosatis, D.S.; Mohanty, A.K.; Lajnef, N. Multi-Walled Carbon Nanotubes/poly(l-lactide) Nanocomposite Strain Sensor for Biomechanical Implants. In Proceedings of Biomedical Circuits and Systems Conference (IEEE BIOCAS 2007), Montreal, Canada, 2007; pp. 119–122.
[6]
Arshak, K.; Perrem, R. Fabrication of a thin-film strain-gauge transducer using Bi2O3-V2O5. Sens. Actuators A 1993, 36, 73–76, doi:10.1016/0924-4247(93)80143-5.
[7]
Hanson, D.E.; Hawley, M.; Houlton, R.; Chitanvis, K.; Rae, P.; Orler, E.B.; Wrobleski, D.A. Stress softening experiments in silica-filled polydimethylsiloxane provide insight into a mechanism for the mullins effect. Polymer 2005, 46, 10989–10995, doi:10.1016/j.polymer.2005.09.039.
[8]
Heggers, J.P.; Kossovsky, N.; Parsons, R.W.; Robson, M.C.; Pelley, R.P.; Raine, T.J. Biocompatibility of silicone implants. Ann. Plast. Surg. 1983, 11, 38–45, doi:10.1097/00000637-198307000-00006.
[9]
McLachlan, D.S.; Chiteme, C.; Park, C.; Wise, K.E.; Lowther, S.E.; Lillehei, P.T.; Siochi, E.J.; Harrison, J.S. AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J. Polym. Sci. Part B 2005, 43, 3273–3287, doi:10.1002/polb.20597.
[10]
Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58, doi:10.1038/354056a0.
[11]
Trojanowicz, M. Analytical applications of carbon nanotubes: A review. Trends Anal. Chem. 2006, 25, 480–489, doi:10.1016/j.trac.2005.11.008.
[12]
Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498, doi:10.1016/j.compscitech.2008.06.018.
[13]
Yu, M.-F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640, doi:10.1126/science.287.5453.637.
[14]
Bokobza, L. Multiwall carbon nanotube elastomeric composites: A review. Polymer 2007, 48, 4907–4920, doi:10.1016/j.polymer.2007.06.046.
[15]
Huang, Y.; Terentjev, E. Dispersion and rheology of carbon nanotubes in polymers. Int. J. Mater. Form. 2008, 1, 63–74, doi:10.1007/s12289-008-0376-6.
[16]
Girifalco, L.A.; Hodak, M.; Lee, R.S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B 2000, 62, 13104–13110, doi:10.1103/PhysRevB.62.13104.
[17]
Andrews, R.; Jacques, D.; Minot, M.; Rantell, T. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 2002, 287, 395–403, doi:10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO;2-S.
[18]
Sato, H.; Sano, M. Characteristics of ultrasonic dispersion of carbon nanotubes aided by antifoam. Colloids Surf. A 2008, 322, 103–107, doi:10.1016/j.colsurfa.2008.02.031.
[19]
Kim, Y.A.; Hayashi, T.; Fukai, Y.; Endo, M.; Yanagisawa, T.; Dresselhaus, M.S. Effect of ball milling on morphology of cup-stacked carbon nanotubes. Chem. Phys. Lett. 2002, 355, 279–284, doi:10.1016/S0009-2614(02)00248-8.
[20]
Inkyo, M.; Tahara, T.; Iwaki, T.; Iskandar, F.; Hogan, C.J., Jr.; Okuyama, K. Experimental investigation of nanoparticle dispersion by beads milling with centrifugal bead separation. J. Colloid Interface Sci. 2006, 304, 535–540, doi:10.1016/j.jcis.2006.09.021.
[21]
Huang, Y.Y.; Ahir, S.V.; Terentjev, E.M. Dispersion rheology of carbon nanotubes in a polymer matrix. Phys. Rev. B 2006, 73, 125422, doi:10.1103/PhysRevB.73.125422.
[22]
Chua, T.P.; Mariatti, M.; Azizan, A.; Rashid, A.A. Effects of surface-functionalized multi-walled carbon nanotubes on the properties of poly(dimethyl siloxane) nanocomposites. Compos. Sci. Technol. 2010, 70, 671–677, doi:10.1016/j.compscitech.2009.12.023.
[23]
Hong, J.; Lee, J.; Hong, C.K.; Shim, S.E. Effect of dispersion state of carbon nanotube on the thermal conductivity of poly(dimethyl siloxane) composites. Curr. Appl. Phys. 2010, 10, 359–363, doi:10.1016/j.cap.2009.06.028.
[24]
Kohlmeyer, R.R.; Javadi, A.; Pradhan, B.; Pilla, S.; Setyowati, K.; Chen, J.; Gong, S. Electrical and dielectric properties of hydroxylated carbon nanotube?elastomer composites. J. Phys. Chem. C 2009, 113, 17626–17629, doi:10.1021/jp901082c.
[25]
Hwang, J.; Jang, J.; Hong, K.; Kim, K.N.; Han, J.H.; Shin, K.; Park, C.E. Poly(3-hexylthiophene) wrapped carbon nanotube/poly(dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors. Carbon 2011, 49, 106–110, doi:10.1016/j.carbon.2010.08.048.
[26]
Subramanyam, U.; Kennedy, J.P. PVA networks grafted with PDMS branches. J. Polym. Sci. Part A 2009, 47, 5272–5277, doi:10.1002/pola.23576.
[27]
Khosla, A.; Gray, B.L. Preparation, characterization and micromolding of multi-walled carbon nanotube polydimethylsiloxane conducting nanocomposite polymer. Mater. Lett. 2009, 63, 1203–1206, doi:10.1016/j.matlet.2009.02.043.
[28]
Kearns, J.C.; Shambaugh, R.L. Polypropylene fibers reinforced with carbon nanotubes. J. Appl. Polym. Sci. 2002, 86, 2079–2084, doi:10.1002/app.11160.
[29]
Mohraz, A.; Moler, D.B.; Ziff, R.M.; Solomon, M.J. Effect of monomer geometry on the fractal structure of colloidal rod aggregates. Phys. Rev. Lett. 2004, 92, 155503, doi:10.1103/PhysRevLett.92.155503.
[30]
Fry, D.; Sintes, T.; Chakrabarti, A.; Sorensen, C.M. Enhanced kinetics and free-volume universality in dense aggregating systems. Phys. Rev. Lett. 2002, 89, 148301, doi:10.1103/PhysRevLett.89.148301.
[31]
Hobbie, E.K. Metastability and depletion-driven aggregation. Phys. Rev. Lett. 1998, 81, 3996, doi:10.1103/PhysRevLett.81.3996.
[32]
Lin-Gibson, S.; Schmidt, G.; Kim, H.; Han, C.C.; Hobbie, E.K. Shear-induced mesostructure in nanoplatelet-polymer networks. J. Chem. Phys. 2003, 119, 8080, doi:10.1063/1.1609972.
[33]
Lillehei, P.T.; Kim, J.-W.; Gibbons, L.J.; Park, C. A quantitative assessment of carbon nanotube dispersion in polymer matrices. Nanotechnology 2009, 20, 325708, doi:10.1088/0957-4484/20/32/325708.
[34]
Lebel, L.L.; Aissa, B.; Khakani, M.A.E.; Therriault, D. Preparation and mechanical characterization of laser ablated single-walled carbon-nanotubes/polyurethane nanocomposite microbeams. Compos. Sci. Technol. 2010, 70, 518–524, doi:10.1016/j.compscitech.2009.12.004.