Near-monodispersed water soluble SnS nanoparticles in the diameter range of 3–6 nm are synthesized by a facile, solution based one-step approach using ethanolamine ligands. The optimal amount of triethanolamine is investigated. The effect of further heat treatment on the size of these SnS nanoparticles is discussed. Diffuse reflectance study of SnS nanoparticles agrees with predictions from quantum confinement model.
Lee, J.-S.; Kovalenko, M.V.; Shevchenko, E.V.; Talapin, D.V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458, doi:10.1021/cr900137k. 19958036
[3]
Leitsmann, R.; Bechstedt, F. Characteristic energies and shifts in optical spectra of colloidal IV?VI semiconductor nanocrystals. ACS Nano 2009, 3, 3505–3512, doi:10.1021/nn900987j. 19873980
[4]
Klimov, V.I.; Jeong, S.; Sykora, M.; Schaller, R.D. High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence. J. Phys. Chem. B 2006, 110, 25332–25338, doi:10.1021/jp065282p. 17165979
[5]
Nur, O.; Zhao, Q.X.; Asif, M.H.; Ali, S.U.; Wadeasa, A.; Yang, L.L.; Willander, M. Zinc oxide nanowires: Controlled low temperature growth and some electrochemical and optical nano-devices. J. Mater. Chem. 2009, 19, 1006–1018, doi:10.1039/b816619f.
[6]
Liu, H.; Wang, J.Y.; Jiang, H.D.; Li, J.; Liu, D.; Cui, J.J.; Liu, X.Y.; Zhou, W.J. Control synthesis of rutile TiO2 microspheres, nanoflowers, nanotrees and nanobelts via acid-hydrothermal method and their optical properties. Cryst. Eng. Comm. 2011, 13, 4557–4563, doi:10.1039/c1ce05186e.
[7]
Brutchey, R.L.; Buckley, J.J.; Antunez, P.D. ?Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells. Nanoscale 2011, 3, 2399–2411, doi:10.1039/c1nr10084j. 21465043
Talapin, D.V.; Shevchenko, E.V.; Lee, J.-S. Au-PbS core-shell nanocrystals: Plasmonic absorption enhancement and electrical doping via intra-particle charge transfer. J. Am. Chem. Soc. 2008, 130, 9673–9675, doi:10.1021/ja802890f. 18597463
[10]
Brutchey, R.L.; Thompson, M.E.; Schlenker, C.W.; Franzman, M.A. Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc. 2010, 132, 4060–4061, doi:10.1021/ja100249m. 20201510
Odom, T.W.; Barton, J.E.; Greyson, E.C. Tetrahedral zinc blende tin sulfide nano- and microcrystals. Small 2006, 2, 368–371, doi:10.1002/smll.200500460. 17193052
[13]
Zainal, Z.; Hussein, M.Z.; Ghazali, A. Cathodic electrodeposition of SnS thin films from aqueous solution. Sol. Energy Mater. Sol. Cells 1996, 40, 347–357, doi:10.1016/0927-0248(95)00157-3.
[14]
Carlone, C.; Parenteau, M. Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors. Phys. Rev. B 1990, 41, 5227–5234, doi:10.1103/PhysRevB.41.5227.
[15]
Ramakrishna Reddy, K.T.; Koteswara Reddy, N. Growth of polycrystalline SnS films by spray pyrolysis. Thin Solid Films 1998, 325, 4–6, doi:10.1016/S0040-6090(98)00431-3.
[16]
Poelman, D.; Tanusevski, A. Optical and photoconductive properties of SnS thin films prepared by electron beam evaporation. Sol. Energy Mater. Sol. Cells 2003, 80, 297–303, doi:10.1016/j.solmat.2003.06.002.
[17]
Hu, G.X.; Fan, B.H.; Gong, H.; Wang, Y. Photovoltaic behavior of nanocrystalline SnS/TiO2. J. Phys. Chem. C 2010, 114, 3256–3259.
[18]
Chaudhuri, S.; Gorai, S.; Panda, S.K. Shape selective solvothermal synthesis of SnS: Role of ethylenediamine-water solvent system. Mater. Sci. Eng. B 2006, 129, 265–269, doi:10.1016/j.mseb.2005.12.014.
[19]
Qian, Y.; Zeng, J.; Yang, B.; Hu, H. Morphology evolution of SnS nanocrystals: From 3D urchin-like architectures to 1D nanostructures. Mater. Chem. Phys. 2004, 86, 233–237, doi:10.1016/j.matchemphys.2004.04.001.
[20]
Zhang, H.; Yang, D.; Zhu, H. 20. Zhu, H.; Yang, D.; Zhang, H.; Hydrothermal synthesis, characterization and properties of SnS nanoflowers. Mater. Lett. 2006, 60, 2686–2689, doi:10.1016/j.matlet.2006.01.065.
[21]
Eychmüller, A.; Rellinghaus, B.; Waurisch, C.; Hickey, S.G. Size and shape control of colloidally synthesized IV?VI nanoparticulate tin(II) sulfide. J. Am. Chem. Soc. 2008, 130, 14978–14980, doi:10.1021/ja8048755. 18922001
[22]
Liu, H.; Liu, Y.; Wang, Z.; He, P. Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion. Nanotechnology 2010, 21, 105707, doi:10.1088/0957-4484/21/10/105707. 20157232
[23]
Zou, G.; Liu, B.; Zou, B.; Dai, Q.; Wang, L.; Xiao, G.; Men, K.; Ning, J. Facile synthesis of IV–VI SnS nanocrystals with shape and size control: Nanoparticles, nanoflowers and amorphous nanosheets. Nanoscale 2010, 2, 1699–1703, doi:10.1039/c0nr00052c. 20820700
[24]
Rotello, V.M.; Ghosh, P.S.; De, M. Applications of nanoparticles in biology. Adv. Mater. 2008, 20, 4225–4241, doi:10.1002/adma.200703183.
[25]
Tilley, R.D.; Bumby, C.W.; Al-Salim, N.; Xu, Y. Synthesis of SnS quantum dots. J. Am. Chem. Soc. 2009, 131, 15990–15991, doi:10.1021/ja906804f. 19842650
[26]
Jiang, T.; Ozin, G.A.; Verma, A.; Bedard, R.L. Adsorption and sensing properties of microporous layered tin sulfide materials. J. Mater. Chem. 1998, 8, 1649–1656, doi:10.1039/a801501e.
[27]
P.; Basu, P.K.; Biswas, S. Preparation and characterization of chemically deposited tin(II) sulphide thin films. Thin Solid Films 1987, 150, 269–276, doi:10.1016/0040-6090(87)90099-X.
[28]
Yang, W.; Gao, F.; Wei, G.; An, L. Ostwald ripening growth of silicon nitride nanoplates. Cryst. Growth Des. 2010, 10, 29–31, doi:10.1021/cg901148q.
[29]
Chergui, M.; Pattison, P.; Al-Salman, A.; Mohammed, M.B.; Tonti, D. Multimodal distribution of quantum confinement in ripened CdSe nanocrystals. Chem. Mater. 2008, 20, 1331–1339, doi:10.1021/cm071439u.
[30]
Zhang, Y.; Feng, Y.; Zhong, X. Facile and reproducible synthesis of red-emitting CdSe nanocrystals in amine with long-term fixation of particle size and size distribution. J. Phys. Chem. C 2007, 111, 526–531.
Tilley, R.D.; Hodgkiss, J.M.; Al-Salim, N.; Xu, Y. Solution synthesis and optical properties of SnTe nanocrystals. Cryst. Growth Des. 2011, 11, 2721–2723, doi:10.1021/cg200660y.
[33]
Tong, Y.; Xu, M.; Wang, K.; Pan, G.; Cao, F.; Chen, H.; Tang, P. Nanoparticulate SnS as an efficient photocatalyst under visible-light irradiation. Mater. Lett. 2011, 65, 450–452, doi:10.1016/j.matlet.2010.10.055.
[34]
Shen, Z.; Sun, L.; Shen, H.; Gao, C. Chemical bath deposition of SnS films with different crystal structures. . Mater. Lett. 2011, 65, 1413–1415, doi:10.1016/j.matlet.2011.02.017.
[35]
Mohandas, E.; Arora, A.K.; Muralidharan, N.G.; Venkiteswaran, C.N.; Divakar, R.; Ghosh, C.; Kalavathi, S.; Muthamizhchelvan, C.; Rajalakshmi, M.; Sohila, S. Synthesis and characterization of SnS nanosheets through simple chemical route. Mater. Lett. 2011, 65, 1148–1150, doi:10.1016/j.matlet.2010.12.029.
[36]
Gunasekhar, K.R.; Ahsanulhaq, Q.; Devika, M.; Koteeswara Reddy, N. Growth of orthorhombic SnS nanobox structures on seeded substrates. Cryst. Growth Des. 2010, 10, 4769–4772, doi:10.1021/cg100621d.
[37]
Tatsumisago, M.; Hayashi, A.; Aso, K. Synthesis of needlelike and platelike SnS active materials in high-boiling solvents and their application to all-solid-state lithium secondary batteries. Cryst. Growth Des. 2011, 11, 3900–3904, doi:10.1021/cg200459t.