New catalytic materials, based on palladium immobilized in ionic liquid supported on alginate, were elaborated. Alginate was associated with gelatin for the immobilization of ionic liquids (ILs) and the binding of palladium. These catalytic materials were designed in the form of highly porous monoliths (HPMs), in order to be used in a column reactor. The catalytic materials were tested for the hydrogenation of 4-nitroaniline (4-NA) in the presence of formic acid as hydrogen donor. The different parameters for the elaboration of the catalytic materials were studied and their impact analyzed in terms of microstructures, palladium sorption properties and catalytic performances. The characteristics of the biopolymer (proportion of β-D-mannuronic acid (M) and α-L-guluronic acid (G) in the biopolymer defined by the M/G ratio), the concentration of the porogen agent, and the type of coagulating agent significantly influenced catalytic performances. The freezing temperature had a significant impact on structural properties, but hardly affected the catalytic rate. Cellulose fibers were incorporated as mechanical strengthener into the catalytic materials, and allowed to enhance mechanical properties and catalytic efficiency but required increasing the amount of hydrogen donor for catalysis.
References
[1]
Mayer, H.A.; Auer, F.; Schneller, T.; Lindner, E. Chemistry in interphases—A new approach to organometallic syntheses and catalysis. Angew. Chem. Int. Ed. 1999, 38, 2155–2174.
[2]
Sheldon, R.A. Green solvents for sustainable organic synthesis: State of the art. Green Chem. 2005, 7, 267–278, doi:10.1039/b418069k.
[3]
Reddy, V.P.; Sinn, E.; Afrasiabi, Z.; Perambuduru, M.; Oh, W.S.; Alleti, R. Gadolinium triflate immobilized in imidazolium based ionic liquids: A recyclable catalyst and green solvent for acetylation of alcohols and amines. Green Chem. 2005, 7, 203–206, doi:10.1039/b416359a.
[4]
Wasserscheid, P. Continuous reactions using ionic liquids as catalytic phase. J. Ind. Eng. Chem. 2007, 13, 325–338.
[5]
Wasserscheid, P.; Haumann, M.; Fehrmann, R.; Riisager, A. Supported Ionic Liquid Phase (SILP) catalysis: An innovative concept for homogeneous catalysis in continuous fixed-bed reactors. Eur. J. Inorg. Chem. 2006, 695–706.
[6]
Wasserscheid, P.; Haumann, M.; Harter, P.; Schneider, M.J.; Bittermann, A.; Szesni, N.; Werner, S. Screening of Supported Ionic Liquid Phase (SILP) catalysts for the very low temperature water-gas-shift reaction. Appl. Catal. A 2010, 377, 70–75, doi:10.1016/j.apcata.2010.01.019.
[7]
de Vos, D.E.; Jacobs, P.A.; Wahlen, J.; Alaerts, L. Recent progress in the immobilization of catalysts for selective oxidation in the liquid phase. Chem. Commun. 2008, 1727–1737.
[8]
Yokoyama, C.; Tomida, D.; Qiao, K.; Kume, Y. Selective hydrogenation of cinnamaldehyde catalyzed by palladium nanoparticles immobilized on ionic liquids modified-silica gel. Catal. Commun. 2008, 9, 369–375, doi:10.1016/j.catcom.2007.07.012.
Dez, I.; Gaumont, A.C.; Madec, P.J.; Perrigaud, K.; Baudoux, J. Development of new SILP catalysts using chitosan as support. Green Chem. 2007, 9, 1346–1351, doi:10.1039/b709226a.
[11]
Dez, I.; Gaumont, A.C.; Guibal, E.; Marinel, S.; Madec, P.J.; Goupil, J.M.; Perrigaud, K.; Moucel, R. Importance of the conditioning of the chitosan support in a catalyst-containing ionic liquid phase immobilised on chitosan: The palladium-catalysed allylation reaction case. Adv. Synth. Catal. 2010, 352, 433–439, doi:10.1002/adsc.200900515.
[12]
Dupont, J.; Dias, S.L.P.; Pavan, F.A.; Foppa, L.; Scheeren, C.W.; Gelesky, M.A. Metal nanoparticle/ionic liquid/cellulose: New catalytically active membrane materials for hydrogenation reactions. Biomacromolecules 2009, 10, 1888–1893, doi:10.1021/bm9003089. 19435363
[13]
Guibal, E.; di Renzo, F.; Quignard, F. From natural polysaccharides to materials for catalysis, adsorption, and remediation. Top. Curr. Chem. 2010, 294, 165–197. 21626753
[14]
Guibal, E. Heterogeneous catalysis on chitosan-based materials: A review. Prog. Polym. Sci. 2005, 30, 71–109, doi:10.1016/j.progpolymsci.2004.12.001.
[15]
Hardy, J.J.E.; Macquarrie, D.J. Applications of functionalized chitosan in catalysis. Ind. Eng. Chem. Res. 2005, 44, 8499–8520, doi:10.1021/ie050007v.
[16]
Guibal, E.; Vincent, T. Chitosan-supported palladium catalyst. 3. Influence of experimental parameters on nitrophenol degradation. Langmuir 2003, 19, 8475–8483, doi:10.1021/la034364r.
[17]
Guibal, E.; Vincent, T.; Blondet, F.P. Hydrogenation of nitrotoluene using palladium supported on chitosan hollow fiber: Catalyst characterization and influence of operative parameters studied by experimental design methodology. Int. J. Biol. Macromol. 2008, 43, 69–78, doi:10.1016/j.ijbiomac.2007.11.008. 18249056
[18]
Di Renzo, F.; Valentin, R.; Quignard, F. Aerogel materials from marine polysaccharides. New J. Chem. 2008, 32, 1300–1310, doi:10.1039/b808218a.
[19]
Quignard, F.; Domard, A.; Viton, C.; Molvinger, K.; Valentin, R. From hydrocolloids to high specific surface area porous supports for catalysis. Biomacromolecules 2005, 6, 2785–2792, doi:10.1021/bm050264j. 16153119
[20]
Brunel, D.; Quignard, F.; Molvinger, K.; Valentin, R. Supercritical CO2 dried chitosan: An efficient intrinsic heterogeneous catalyst in fine chemistry. New J. Chem. 2003, 27, 1690–1692, doi:10.1039/b310109f.
[21]
Choplin, A.; Quignard, F. Cellulose: A new bio-support for aqueous phase catalysts. Chem. Commun. 2001, 21–22.
[22]
Jouannin, C.; Vincent, T.; Guibal, E. Immobilization of extractants in biopolymer capsules for the synthesis of new resins: A focus on the encapsulation of tetraalkyl phosphonium ionic liquids. J. Mater. Chem. 2009, 19, 8515–8527, doi:10.1039/b911318e.
[23]
Guibal, E.; Parodi, A.; Vincent, T. Immobilization of Cyphos IL-101 in biopolymer capsules for the synthesis of Pd sorbents. React. Funct. Polym. 2008, 68, 1159–1169, doi:10.1016/j.reactfunctpolym.2008.04.001.
[24]
Guibal, E.; Vincent, T.; Taulemesse, J.M.; Gaumont, A.C.; Dez, I.; Jouannin, C. Palladium supported on alginate/ionic liquid highly porous monoliths: Application to 4-nitroaniline hydrogenation. Appl. Catal. B 2011, 103, 444–452, doi:10.1016/j.apcatb.2011.02.008.
[25]
Wang, D.M.; Lai, J.Y.; Hou, L.T.; Hsien, T.Y.; Hsieh, H.J.; Kuo, P.Y.; Ho, M.H. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 2004, 25, 129–138, doi:10.1016/S0142-9612(03)00483-6. 14580916
[26]
Hsieh, H.J.; Lai, J.Y.; Wang, D.M.; Ho, M.H.; Lin, Y.A.; Yuan, N.Y. Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydr. Polym. 2009, 78, 349–356, doi:10.1016/j.carbpol.2009.04.021.
[27]
Guo, Y.B.; Parks, W.M. A casting based process to fabricate 3D alginate scaffolds and to investigate the influence of heat transfer on pore architecture during fabrication. Mater. Sci. Eng. C 2008, 28, 1435–1440, doi:10.1016/j.msec.2008.03.013.
[28]
Cohen, S.; Glicklis, R.; Zmora, S. Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials 2002, 23, 4087–4094. 12182310
[29]
Quignard, F.; di Renzo, F.; Garrone, E.; Bonelli, B.; Horga, R.; Valentin, R. FTIR spectroscopy of NH3 on acidic and ionotropic alginate aerogels. Biomacromolecules 2006, 7, 877–882, doi:10.1021/bm050559x. 16529426