|
中国图象图形学报 2012
Improved incremental dissimilarity approximations algorithm using sub-vector sorting
|
Abstract:
渐进不相似度逼近(IDA)算法是一种新近提出的高性能快速图像匹配算法,它通过分割匹配矢量,避免了大量的基于像素的计算。但是分割后的子矢量能量集中性差,因此算法效率仍有提升空间。为了改进能量集中性差这个问题,提出一种按子矢量方差顺序展开的方案,按该顺序展开子矢量能使匹配矢量排除得更快,平均展开的子矢量数下降,明显减少了搜索空间。除此之外,还加入了在IDA测试之前的利用整体矢量模的一次新的排除测试,并在子矢量展开中引入了PDS(partial distortion search)算法。本文改进算法对图像数据库中室内场景、室外自然场景和室外人文场景这3类图像进行测试时,整体匹配效率较IDA算法提升了72%~83%。