全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Molecules  2012 

Molecular Assemblies of Porphyrins and Macrocyclic Receptors: Recent Developments in Their Synthesis and Applications

DOI: 10.3390/molecules171011763

Keywords: porphyrin, cyclodextrin, calixarene, resorcinarene, molecular recognition, host-guest systems

Full-Text   Cite this paper   Add to My Lib

Abstract:

Metalloporphyrins which form the core of many bioenzymes and natural light harvesting or electron transport systems, exhibit a variety of selective functional properties depending on the state and surroundings with which they exist in biological systems. The specificity and ease with which they function in each of their bio-functions appear to be largely governed by the nature and disposition of the protein globule around the porphyrin reaction center. Synthetic porphyrin frameworks confined within or around a pre-organized molecular entity like the protein network in natural systems have attracted considerable attraction, especially in the field of biomimetic reactions. At the same time a large number of macrocyclic oligomers such as calixarenes, resorcinarenes, spherands, cyclodextrins and crown ethers have been investigated in detail as efficient molecular receptors. These molecular receptors are synthetic host molecules with enclosed interiors, which are designed three dimensionally to ensure strong and precise molecular encapsulation/recognition. Due to their complex structures, enclosed guest molecules reside in an environment isolated from the outside and as a consequence, physical properties and chemical reactions specific to that environment in these guest species can be identified. The facile incorporation of such molecular receptors into the highly photoactive and catalytically efficient porphyrin framework allows for convenient design of useful molecular systems with unique structural and functional properties. Such systems have provided over the years attractive model systems for the study of various biological and chemical processes, and the design of new materials and molecular devices. This review focuses on the recent developments in the synthesis of porphyrin assemblies associated with cyclodextrins, calixarenes and resorcinarenes and their potential applications in the fields of molecular encapsulation/recognition, and chemical catalysis.

References

[1]  Voet, D.; Voet, J.D. Biochemistry, 3rd ed.; Wiley: New York, NY, USA, 2004; pp. 1–1606.
[2]  Kadish, K.M., Smith. Biochemistry and Binding: Activation of Small Molecules. In The Porphyrin Handbook; Academic Press: San Diego, CA, USA, 2000; Volume 4, pp. 1–341.
[3]  Kadish, K.M., Smith. Bioinorganic and Bioorganic Chemistry. In The Porphyrin Handbook; Academic Press: San Diego, CA, USA, 2003; Volume 11, pp. 1–277.
[4]  Milanesio, M.E.; Alvarez, M.G.; Durantini, E.N. Methoxyphenylporphyrin derivatives as phototherapeutic agents. Curr. Bioact. Compd. 2010, 6, 97–105, doi:10.2174/157340710791184840.
[5]  De Visser, S.P.; Valentine, J.S.; Nam, W. A biomimetic ferric hydroperoxoporphyrin intermediate. Angew. Chem. Int. Ed. Engl. 2010, 49, 2099–2101, doi:10.1002/anie.200906736.
[6]  Rocha Gonsalves, A.M.A.; Serra, A.C.; Pineiro, M. The small stones of Coimbra in the huge tetrapyrrolic chemistry building. J. Porphyr. Phthalocya. 2009, 13, 429–445, doi:10.1142/S1088424609000607.
[7]  Maeda, C.; Kamada, T.; Aratani, N.; Osuka, A. Chiral self-discriminative self-assembling of meso-meso linked diporphyrins. Coord. Chem. Rev. 2007, 251, 2743–2752, doi:10.1016/j.ccr.2007.02.017.
[8]  Hori, T.; Nakamura, Y.; Aratani, N.; Osuka, A. Exploration of electronically interactive cyclic porphyrin arrays. J. Organomet. Chem. 2007, 692, 148–155.
[9]  Savitsky, A.; M?bius, K. Photochemical reactions and photoinduced electron-transfer processes in liquids, frozen solutions, and proteins as studied by multifrequency time-resolved EPR spectroscopy. Helv. Chim. Acta 2006, 89, 2544–2589, doi:10.1002/hlca.200690232.
[10]  Balaban, T.S. Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems. Acc. Chem. Res. 2005, 38, 612–623, doi:10.1021/ar040211z.
[11]  Carofiglio, T.; Lubian, E.; Varotto, A. Synthesis, heterogenization and sensing properties of melamine-bridged bis-porphyrin dimers. J. Porphyr. Phthalocya. 2010, 14, 701–707, doi:10.1142/S1088424610002550.
[12]  Samaroo, D.; Vinodu, M.; Chen, X.; Drain, C.M. meso-Tetra(pentafluorophenyl)porphyrin as an efficient platform for combinatorial synthesis and the selection of new photodynamic therapeutics using a cancer cell line. J. Comb. Chem. 2007, 9, 998–1011, doi:10.1021/cc070067j.
[13]  Tsuda, A. Design of porphyrin nanoclusters toward discovery of novel properties and functions. Bull. Chem. Soc. Jpn. 2009, 82, 11–28, doi:10.1246/bcsj.82.11.
[14]  Goldberg, I. Crystal engineering of nanoporous architectures and chiral porphyrin assemblies. CrystEngComm 2008, 10, 637–645, doi:10.1039/b800107c.
[15]  Shinoda, S. Nanoscale substrate recognition by porphyrin dendrimers with patched structures. J. Incl. Phenom. Macro. 2007, 59, 1–9, doi:10.1007/s10847-007-9315-2.
[16]  Boyd, P.D.W.; Reed, C.A. Fullerene-porphyrin constructs. Acc. Chem. Res. 2005, 38, 235–242, doi:10.1021/ar040168f.
[17]  Jurow, M.; Schuckman, A.E.; Batteas, J.D.; Drain, C.M. Porphyrins as molecular electronic components of functional devices. Coord. Chem. Rev. 2010, 254, 2297–2310, doi:10.1016/j.ccr.2010.05.014.
[18]  Beletskaya, I.; Tyurin, V.S.; Tsivadze, A.Y.; Gulard, R.; Stern, C. Supramolecular chemistry of metalloporphyrins. Chem. Rev. 2009, 109, 1659–1713, doi:10.1021/cr800247a.
[19]  Chen, Y.; Zhang, Y.; Liu, Y. Molecular selective binding and nano-fabrication of cucurbituril/cyclodextrin pairs. Isr. J. Chem. 2011, 51, 515–524, doi:10.1002/ijch.201100010.
[20]  Endo, T. Vital significance of addition of “shape similarity” between solutes to shape complementarity for more precise molecular recognition in aqueous binary solvents. Chem. Rec. 2011, 11, 146–157, doi:10.1002/tcr.201100001.
[21]  Kraus, T. Modified cyclodextrins with pendant cationic and anionic moieties as hosts for highly stable inclusion complexes and molecular recognition. Curr. Org. Chem. 2011, 15, 802–814, doi:10.2174/138527211794518907.
[22]  De Rossi, R.H.; Silva, O.F.; Vico, R.V.; Gonzalez, C.J. Molecular organization and recognition properties of amphiphiliccyclodextrins. Pure Appl. Chem. 2009, 81, 755–765, doi:10.1351/PAC-CON-08-08-13.
[23]  Sallas, F.; Darcy, R. Amphiphiliccyclodextrins—Advances in synthesis and supramolecular chemistry. Eur. J. Org. Chem. 2008, 6, 957–969, doi:10.1002/ejoc.200700933.
[24]  Korendovych, I.V.; Roesner, R.A.; Rybak-Akimova, E.V. Molecular recognition of neutral and charged guests using metallomacrocyclic hosts. Adv. Inorg. Chem. 2007, 59, 109–173.
[25]  Wang, M. Nitrogen and oxygen bridged calixaromatics: Synthesis, structure, functionalization, and molecular recognition. Acc. Chem. Res. 2012, 45, 182–195, doi:10.1021/ar200108c.
[26]  Joseph, R.; Rao, C.P. Ion and molecular recognition by lower rim 1,3-di-conjugates of calix[4]arene as receptors. Chem. Rev. 2011, 111, 4658–4702, doi:10.1021/cr1004524.
[27]  Evtugyn, G.A.; Stoikova, E.E.; Shamagsumova, R.V. Molecular receptors and electrochemical sensors based on functionalized calixarenes. Russ. Chem. Rev. 2010, 79, 1071–1097.
[28]  Mokhtari, B.; Pourabdollah, K.; Dalali, N. Molecule and ion recognition of nano-baskets of calixarenes since 2005. J. Coord. Chem. 2011, 64, 743–794, doi:10.1080/00958972.2011.555538.
[29]  Sansone, F.; Baldini, L.; Casnati, A.; Ungaro, R. Calixarenes: From biomimetic receptors to multivalent ligands for biomolecular recognition. New J. Chem. 2010, 34, 2715–2728, doi:10.1039/c0nj00285b.
[30]  Thatiparti, T.R.; Shoffstall, A.J.; von Recum, H.A. Cyclodextrin-based device coatings for affinity-based release of antibiotics. Biomaterials 2010, 31, 2335–2347, doi:10.1016/j.biomaterials.2009.11.087.
[31]  Liu, Y.; Chen, Y. Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers. Acc. Chem. Res. 2006, 39, 681–691, doi:10.1021/ar0502275.
[32]  Easton, C.J.; Lincoln, S.F. Chiral discrimination by modified cyclodextrins. Chem. Soc. Rev. 1996, 25, 163–170.
[33]  Murakami, Y.; Kikuchi, J.; Hisaeda, Y.; Hayashida, O. Artificial enzymes. Chem. Rev. 1996, 96, 721–758, doi:10.1021/cr9403704.
[34]  Walker, B.D.; Joshi, G.; Davis, A.P. Progress in biomimetic carbohydrate recognition. Cell. Mol. Life Sci. 2009, 66, 3177–3191, doi:10.1007/s00018-009-0081-8.
[35]  Puglisi, A.; Purrello, R.; Rizzarelli, E.; Sortino, S.; Vecchio, G. Spectroscopic and self-association behavior of a porphyrin-β-cyclodextrin conjugate. New J. Chem. 2007, 31, 1499–1506, doi:10.1039/b703680a.
[36]  Jayawickramarajah, J.; Tagore, D.M.; Tsou, L.K.; Hamilton, A.D. Allosteric control of self-assembly: Modulating the formation of guanine quadruplexes through orthogonal aromatic interactions. Angew. Chem. Int. Ed. Engl. 2007, 46, 7583–7586, doi:10.1002/anie.200701883.
[37]  Hosokawa, K.; Miura, Y.; Kiba, T.; Kakuchi, T.; Sato, S. Fluorescence resonance energy transfer in host-guest inclusion complexes of cyclodextrin-porphyrin composite in aqueous solution. Chem. Lett. 2008, 37, 60–61, doi:10.1246/cl.2008.60.
[38]  Fathalla, M.; Li, S.; Diebold, U.; Alb, A.; Jayawickramarajah, J. Water-soluble nano-rods self-assembled via pristine C60 and porphyrin moieties. Chem. Commun. 2009, 2009, 4209–4211.
[39]  Kralova, J.; Kejik, Z.; Briza, T.; Pouckova, P.; Kral, A.; Martasek, P.; Kral, V. Porphyrin-cyclodextrinconjugates as a nanosystem for versatile drug delivery and multimodal cancer therapy. J. Med. Chem. 2010, 53, 128–138, doi:10.1021/jm9007278.
[40]  Kejik, Z.; Briza, T.; Kralova, J.; Pouckova, P.; Kral, A.; Martasek, P.; Kral, V. Coordination conjugates of therapeutic proteins with drug carriers: A new approach for versatile advanced drug delivery. Bioorg. Med. Chem. Lett. 2011, 21, 5514–5520.
[41]  Guo, Y.; Zhang, P.; Chao, J.; Shuang, S.; Dong, C. Study on the supramolecular system of 5-(p-hydroxyphenyl)-10,15,20-tris-(4-chlorophenyl)porphyrin with cyclodextrins and its analytical characteristics. Spectrochim. Acta A 2008, 71A, 946–950.
[42]  Zhang, L.; Li, X.; Kang, S.-Z.; Mu, J. Complex of porphyrins and cyclodextrin-modified multi-walled carbon nanotubes: Preparation and its properties. Supramol. Chem. 2008, 20, 601–604, doi:10.1080/10610270701543423.
[43]  Fathalla, M.; Neuberger, A.; Li, S.-C.; Schmehl, R.; Diebold, U.; Jayawickramarajah, J. Straightforward self-assembly of porphyrin nanowires in water: Harnessing adamantane/β-cyclodextrin interactions. J. Am. Chem. Soc. 2010, 132, 9966–9967.
[44]  Li, X.-X.; Wang, J.-W.; Guo, Y.-J.; Kong, L.-H.; Pan, J.-H. Study on inclusion complexes of meso-tetrakis(2-thienyl)porphyrin and Cu-meso-tetrakis(2-thienyl)porphyrin with cyclodextrins by spectroscopy method. J. Incl. Phenom. Macro. 2007, 58, 307–315, doi:10.1007/s10847-006-9158-2.
[45]  Arimura, T.; Tsuchiya, Y.; Tashiro, M.; Tachiya, M. Photocurrent generators derived from non-covalently assembled cyclodextrinnano-system. J. Photopolym. Sci. Tech. 2007, 20, 533–538, doi:10.2494/photopolymer.20.533.
[46]  Guo, Y.-J.; Chao, J.-B.; Pan, J.-H. Study on the interaction of 5-pyridine-10,15,20-tris-(p-chlorophenyl)porphyrin with cyclodextrins and DNA by spectroscopy. Spectrochim. Acta A 2007, 68A, 231–236.
[47]  Kiba, T.; Suzuki, H.; Hosokawa, K.; Kobayashi, H.; Baba, S.; Kakuchi, T.; Sato, S. Supramolecular J-aggregate assembly of a covalently linked zinc Porphyrin-β-cyclodextrin conjugate in a water/ethanol binary mixture. J. Phys. Chem. B. 2009, 113, 11560–11563.
[48]  Yang, Y.; Zhang, Y.-M.; Chen, Y.; Zhao, D.; Chen, J.-T.; Liu, Y. Construction of a grapheme oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chem. Eur. J. 2012, 18, 4208–4215.
[49]  Gu, Z.-Y.; Guo, D.-S.; Sun, M.; Liu, Y. Effective enlargement of fluorescence resonance energy transfer of poly-porphyrinmediated by β-cyclodextrindimers. J. Org. Chem. 2010, 75, 3600–3607.
[50]  Ermilov, E.A.; Menting, R.; Lau, J.T.F.; Leng, X.; Roeder, B.; Ng, D.K.P. Switching the photoinduced processes in host-guest complexes of β-cyclodextrin-substituted silicon(iv) phthalocyanines and a tetrasulfonatedporphyrin. Phys. Chem. Chem. Phys. 2011, 13, 17633–17641.
[51]  Xu, H.; Ermilov, E.A.; Roeder, B.; Ng, D.K.P. Formation and energy transfer property of a subphthalocyanine-porphyrin complex held by host-guest interactions. Phys. Chem. Chem. Phys. 2010, 12, 7366–7370.
[52]  Khavasi, H.R.; Sasan, K.; Safari, N. Inclusion complex of iron meso-tetrakis(p-sulfonatophenyl)porphyrin and 2-hydroxypropyl-β-cyclodextrin as a functional model of cytochrome P-450; study on a supramolecular formation and its application in aqueous oxidation of styrene. J. Porphyr. Phthalocya. 2007, 11, 874–882, doi:10.1142/S1088424607000990.
[53]  Liu, Y.; Ke, C.-F.; Zhang, H.-Y.; Cui, J.; Ding, F. Complexation-induced transition of nanorod to network aggregates: Alternate porphyrin and cyclodextrinarrays. J. Am. Chem. Soc. 2008, 130, 600–605.
[54]  Liang, P.; Zhang, H.-Y.; Yu, Z.-L.; Liu, Y. Solvent-controlled photoinduced electron transfer between porphyrin and carbon nanotubes. J. Org. Chem. 2008, 73, 2163–2168.
[55]  Qiu, W.-G.; Li, Z.-F.; Bai, G.-M.; Meng, S.-N.; Dai, H.-X.; He, H. Study on the inclusion behavior between meso-tetrakis[4-(3-pyridinium-propoxy)phenyl]porphyrintetrakis-bromide and β-cyclodextrinderivatives in aqueous solution. Spectrochim. Acta A 2007, 66A, 1189–1193.
[56]  Guo, Y.-J.; Guo, L.; Pan, J.-H. Study on the supramolecular system of tetrakis(2-hydroxy-5-sulfonatophenyl)porphyrin with cyclodextrins by spectroscopy. Phys. Chem. Liq. 2007, 45, 261–269, doi:10.1080/00319100601137213.
[57]  Kano, K.; Ishida, Y. Supramolecular complex of cytochrome c with a polyanionic β-cyclodextrin. Angew. Chem. Int. Ed. Engl. 2007, 46, 727–730, doi:10.1002/anie.200603471.
[58]  Tsuchiya, Y.; Yamano, A.; Shiraki, T.; Sada, K.; Shinkai, S. Single-crystal structure of porphyrin bicapped with trimethyl-β-cyclodextrins: A novel dye-oriented material. Chem. Lett. 2011, 40, 99–101, doi:10.1246/cl.2011.99.
[59]  Callari, F.L.; Mazzaglia, A.; Scolaro, L.M.; Valli, L.; Sortino, S. Biocompatible nanoparticles of amphiphilic cyclodextrins entangling porphyrins as suitable vessels for light-induced energy and electron transfer. J. Mater. Chem. 2008, 18, 802–805, doi:10.1039/b717260e.
[60]  Yu, M.; Chen, Y.; Zhang, N.; Liu, Y. Construction and transmembrane dissociation behavior of supramolecular assembly of quinolinocyclodextrin with porphyrin. Org. Biomol. Chem. 2010, 8, 4148–4154, doi:10.1039/c0ob00080a.
[61]  Wang, Y.; Cohen, B.; Jicsinszky, L.; Douhal, A. Femtosecond to second studies of a water-soluble porphyrin derivative in chemical and biological nanocavities. Langmuir 2012, 28, 4363–4372, doi:10.1021/la204949e.
[62]  Mazzaglia, A.; Valerio, A.; Micali, N.; Villari, V.; Quaglia, F.; Castriciano, M.A.; Scolaro, L.M.; Giuffre, M.; Siracusano, G.; Sciortino, M.T. Effective cell uptake of nanoassemblies of a fluorescent amphiphilic cyclodextrin and an anionic porphyrin. Chem. Commun. 2011, 47, 9140–9142.
[63]  Ferro, S.; Jori, G.; Sortino, S.; Stancanelli, R.; Nikolov, P.; Tognon, G.; Ricchelli, F.; Mazzaglia, A. Inclusion of 5-[4-(1-Dodecanoylpyridinium)]-10,15,20-triphenylporphine in supramolecular aggregates of cationic amphiphilic cyclodextrins: Physicochemical characterization of the complexes and strengthening of the antimicrobial photosensitizing activity. Biomacromolecules 2009, 10, 2592–2600, doi:10.1021/bm900533r.
[64]  Mora, S.J.; Cormick, M.P.; Milanesio, M.E.; Durantini, E.N. The photodynamic activity of a novel porphyrin derivative bearing a fluconazole structure in different media and against Candida albicans. Dyes Pigm. 2010, 87, 234–240, doi:10.1016/j.dyepig.2010.04.001.
[65]  Zhang, Y.-M.; Chen, Y.; Zhuang, R.-J.; Liu, Y. Supramolecular architecture of tetrathiafulvalene-bridged bis(β-cyclodextrin) with porphyrin and its electron transfer behaviors. Photochem. Photobiol. Sci. 2011, 10, 1393–1398, doi:10.1039/c0pp00224k.
[66]  Zhang, Y.-M.; Chen, Y.; Yang, Y.; Liu, P.; Liu, Y. Supramolecular architectures by fullerene-bridged bis(permethyl-β-cyclodextrin)s with porphyrins. Chem. Eur. J. 2009, 15, 11333–11340, doi:10.1002/chem.200901641.
[67]  Leng, X.; Choi, C.-F.; Lo, P.-C.; Ng, D.K.P. Assembling a mixed phthalocyanine-porphyrin array in aqueous media through host-guest interactions. Org. Lett. 2007, 9, 231–234.
[68]  Valli, L.; Giancane, G.; Mazzaglia, A.; Scolaro, L.M.; Conoci, S.; Sortino, S. Photoresponsive multilayer films by assembling cationic amphiphilic cyclodextrins and anionic porphyrins at the air/water interface. J. Mater. Chem. 2007, 17, 1660–1663, doi:10.1039/b703067c.
[69]  Wang, K.-R; Guo, D.-S.; Jiang, B.-P.; Liu, Y. Excitonic coupling interactions in the self-assembly of perylene-bridged bis(β-cyclodextrin)s and porphyrin. Chem. Commun. 2012, 48, 3644–3646, doi:10.1039/c2cc17786b.
[70]  Long, L.; Jin, J.Y.; Zhang, Y.; Yang, R.; Wang, K. Interactions between protein and porphyrin-containing cyclodextrin supramolecular system: A fluorescent sensing approach for albumin. Analyst 2008, 133, 1201–1208, doi:10.1039/b808754g.
[71]  Yu, S.; Yin, Y.; Zhu, J.; Huang, X.; Luo, Q.; Xu, J.; Shen, J.; Liu, J. A modulatory bifunctional artificial enzyme with both SOD and GPx activities based on a smart star-shaped pseudo-block copolymer. Soft Matter 2010, 6, 5342–5350, doi:10.1039/c0sm00162g.
[72]  Yu, S.; Huang, X.; Miao, L.; Zhu, J.; Yin, Y.; Luo, Q.; Xu, J.; Shen, J.; Liu, J. A supramolecular bifunctional artificial enzyme with superoxide dismutase and glutathione peroxidase activities. Bioorg. Chem. 2010, 38, 159–164, doi:10.1016/j.bioorg.2010.03.001.
[73]  Oliveri, V.; Puglisi, A.; Vecchio, G. New conjugates of β-cyclodextrin with manganese(III) salophen and porphyrin complexes as antioxidant systems. Dalton Trans. 2011, 40, 2913–2919.
[74]  Watanabe, K.; Kano, K. Time-dependent enzyme activity dominated by dissociation of J-aggregates bound to protein surface. Bioconjug. Chem. 2010, 21, 2332–2338, doi:10.1021/bc100355v.
[75]  Kano, K.; Ishida, Y. Regulation of α-chymotrypsin catalysis by ferric porphyrins and cyclodextrins. Chem. Asian J. 2008, 3, 678–686, doi:10.1002/asia.200700383.
[76]  Kitagishi, H.; Tamaki, M.; Ueda, T.; Hirota, S.; Ohta, T.; Naruta, Y.; Kano, K. Oxoferryl porphyrin/hydrogen peroxide system whose behavior is equivalent to hydroperoxoferric porphyrin. J. Am. Chem. Soc. 2010, 132, 16730–16732, doi:10.1021/ja106798a.
[77]  Kano, K. Porphyrin-cyclodextrin supramolecular complexes as myoglobin model in water. Colloid Polym. Sci. 2008, 286, 79–84, doi:10.1007/s00396-007-1724-7.
[78]  Kano, K.; Ochi, T.; Okunaka, S.; Ota, Y.; Karasugi, K.; Ueda, T.; Kitagishi, H. Preparation and function of poly(acrylic acid)s modified by supramolecular complex composed of porphinatoiron and a cyclodextrin dimer that bind diatomic molecules (O2 and CO) in aqueous solution. Chem. Asian J. 2011, 6, 2946–2955, doi:10.1002/asia.201100354.
[79]  Kano, K.; Kitagishi, H. Hemo CD as an artificial oxygen carrier: Oxygen binding and autoxidation. Artif. Organs 2009, 33, 177–182, doi:10.1111/j.1525-1594.2008.00704.x.
[80]  Watanabe, K.; Kitagishi, H.; Kano, K. Supramolecular ferric porphyrins as cyanide receptors in aqueous solution. ACS Med. Chem. Lett. 2011, 2, 943–947, doi:10.1021/ml200231x.
[81]  Kano, K.; Kitagishi, H.; Dagallier, C.; Kodera, M.; Matsuo, T.; Hayashi, T.; Hisaeda, Y.; Hirota, S. Iron porphyrin-cyclodextrin supramolecular complex as a functional model of myoglobin in aqueous solution. Inorg. Chem. 2006, 45, 4448–4460.
[82]  Baldini, L.; Casnati, A.; Sansone, F.; Ungaro, R. Calixarene-based multivalent ligands. Chem. Soc. Rev. 2007, 36, 254–266, doi:10.1039/b603082n.
[83]  Hosseini, A.; Taylor, S.; Accorsi, G.; Armaroli, N.; Reed, C.A.; Boyd, P.D. Calix[4]arene-linked bisporphyrin hosts for fullerenes: Binding strength, solvation effects, and porphyrin-fullerene charge transfer bands. J. Am. Chem. Soc. 2006, 128, 15903–15913.
[84]  Pognon, G.; Boudon, C.; Schenk, K.J.; Bonin, M.; Bach, B.; Weiss, J. Electrochemically triggered open and closed pacman bis-metalloporphyrins. J. Am. Chem. Soc. 2006, 128, 3488–3489.
[85]  Ivanova, Y.B.; Churakhina, Y.I.; Mamardashvili, N.Z. Synthesis and basic properties of bisporphyrinocalix[4]arene. Russ. J. Gen. Chem 2008, 78, 673–677, doi:10.1134/S1070363208040269.
[86]  Mamardashvili, G.M.; Zvezdina, S.V.; Mamardashvili, N.Z. Bisporphyrin-calix[4]arene heterotopic receptors of multifunctional substrates. Russ. J. Gen. Chem. 2011, 81, 594–601, doi:10.1134/S1070363211030273.
[87]  Arimura, T.; Nishioka, T.; Suga, Y.; Kumamoto, S.; Tsuchiya, Y.; Yamaguchi, T.; Tachiya, M. 13C-NMR longitudinal relaxation time studies of a molecular tweezers derived from a calixarene-porphyrin conjugate. J. Oleo Sci. 2007, 56, 155–158, doi:10.5650/jos.56.155.
[88]  Pognon, G.; Wytko, J.A.; Weiss, J. Unsymmetrical calix[4]arene bisporphyrin pacman. Org. Lett. 2007, 9, 785–788, doi:10.1021/ol062945c.
[89]  Ivanova, Y.B.; Kumeev, R.S.; Mamardashvili, N.Z. pH-Dependent conformational changes in bisporphyrincalix[4]arene. Russ. J. Gen. Chem. 2008, 78, 485–492, doi:10.1134/S1070363208030249.
[90]  Zvezdina, S.V.; Churakhina, Y.I.; Mamardashvili, N.Z. Synthesis and design of supramolecular systems on the basis of tetrapyrrole macrocycles. Russ. J. Org. Chem. 2007, 43, 1864–1869, doi:10.1134/S1070428007120214.
[91]  D’Urso, A.; Nicotra, P.F.; Centonze, G.; Fragala, M.E.; Gattuso, G.; Notti, A.; Pappalardo, A.; Pappalardo, S.; Parisi, M.F.; Purrello, R. Induction of chirality in porphyrin-(bis)calixarene assemblies: A mixed covalent-non-covalent vs. a fully non-covalent approach. Chem. Commun 2012, 48, 4046–4048.
[92]  Mamardashvili, N.Z.; Koifman, O.I. Synthesis of calix[4]arene bis-porphyrin on the basis of biladiene-a,c dihydrobromide. Macrohetrocycles 2009, 2, 30–32.
[93]  Mamardashvili, G.M.; Shinkar’, I.A.; Mamardashvili, N.Z.; Koifman, O.I. Calix[4]arene-porphyrin molecular receptors for selective binding of ethylenediamines. Russ. J. Coord. Chem. 2007, 33, 774–778.
[94]  Kas, M.; Lang, K.; Stibor, I.; Lhotak, P. Novel fullerene receptors based on calixarene-porphyrin conjugates. Tetrahedron Lett. 2007, 48, 477–481, doi:10.1016/j.tetlet.2006.11.044.
[95]  Grimm, B.; Schornbaum, J.; Cardona, C.M.; van Paauwe, J.D.; Boyd, P.D.W.; Guldi, D.M. Enhanced binding strengths of acyclic porphyrin hosts with endohedral metallofullerenes. Chem. Sci. 2011, 2, 1530–1537, doi:10.1039/c0sc00569j.
[96]  Kundrat, O.; Kas, M.; Tkadlecova, M.; Lang, K.; Cvacka, J.; Stibor, I.; Lhotak, P. Thiacalix[4]arene-porphyrin conjugates with high selectivity towards fullerene C70. TetrahedronLett. 2007, 48, 6620–6623.
[97]  Rossom, W.V.; Kundrat, O.; Ngo, T.H.; Lhotak, P.; Dehaen, W.; Maes, W. n oxacalix[2]arene[2]pyrimidine-bis(Zn-porphyrin) tweezer as a selective receptor towards fullerene C-70. Tetrahedron Lett. 2010, 51, 2423–2426, doi:10.1016/j.tetlet.2010.02.137.
[98]  Sun, D.; Tham, F.S.; Reed, C.A.; Chaker, L.; Burgess, M.; Boyd, P.D.W. Porphyrin-fullerene host-guest chemistry. J. Am. Chem. Soc. 2000, 122, 10704–10705.
[99]  Guldi, D.M. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem. Soc. Rev. 2002, 31, 22–36, doi:10.1039/b106962b.
[100]  Arimura, T.; Ide, S.; Suga, Y.; Tachiya, M. Syntheses and characterizations of a new calixarene-porphyrin conjugate as electron transfer system. J. Oleo Sci. 2007, 56, 149–153, doi:10.5650/jos.56.149.
[101]  Snurnikova, O.V.; Lukyanenko, A.P.; Alekseeva, E.A.; Korovin, Y.V.; Rusakova, N.V. Synthesis and spectral-luminescent properties of polynuclear lanthanide complexes with functionalized calix[4]arenes. Macroheterocycles 2011, 4, 93–96, doi:10.6060/mhc2011.2.05.
[102]  Tsuge, A.; Kunimune, T.; Ikeda, Y.; Moriguchi, T.; Araki, K. Binding properties of calixarene-based cofacial bisporphyrins. Chem. Lett. 2010, 39, 1155–1157, doi:10.1246/cl.2010.1155.
[103]  Monnereau, C.; Rebilly, J.-N.; Reinaud, O. Synthesis and first studies of the host-guest and substrate recognition properties of a porphyrin-tethered calix[6]arene ditopic ligand. Eur. J. Org. Chem. 2011, 2011, 166–175, doi:10.1002/ejoc.201001225.
[104]  Holler, M.; Schmitt, M.; Nierengarten, J.-F. Synthesis and conformational analysis of porphyrin derivatives substituted with calix[4]arene subunits. J. Porphyr. Phthalocya. 2011, 15, 1183–1188, doi:10.1142/S1088424611004099.
[105]  Wu, L.; Jiao, L.; Lu, Q.; Hao, E.; Zhou, Y. Spectrofluorometric studies on the interaction between oxacalix[6]arene-locked trizinc(II)porphyrins and crystal violet. Spectrochim. Acta A 2009, 73, 353–357, doi:10.1016/j.saa.2009.02.039.
[106]  Jiao, L.; Hao, E.; Fronczek, F.R.; Smith, K.M.; Vicente, M.G.H. Syntheses and properties of functionalized oxacalix[4]arene porphyrins. Tetrahedron 2007, 63, 4011–4017, doi:10.1016/j.tet.2007.03.005.
[107]  Iwamoto, H.; Nishi, S.; Haino, T. Highly shape-selective guest encapsulation in the precisely defined cavity of a calix[4]arene-capped metalloporphyrin. Chem. Commun. 2011, 47, 12670–12672, doi:10.1039/c1cc14739k.
[108]  Giancane, G.; Valli, L. State of art in porphyrin Langmuir-Blodgett films as chemical sensors. Adv. Colloid Interface Sci. 2012, 171-172, 17–35, doi:10.1016/j.cis.2012.01.001.
[109]  Brittle, S.A.; Richardson, T.H.; Varley, L.; Hunter, C.A. Amine-sensing properties of a covalently linked calix[4]arene-porphyrin (“calixporph”) multilayered. J. Porphyr. Phthalocya. 2010, 14, 1027–1033, doi:10.1142/S1088424610002859.
[110]  De Miguel, G.; Perez-Morales, M.; Martin-Romero, M.T.; Munoz, E.; Richardson, T.H.; Camacho, L. J-aggregation of a water-soluble tetracationic porphyrin in mixed LB films with a calix[8]arene carboxylic acid derivative. Langmuir 2007, 23, 3794–3801, doi:10.1021/la062934s.
[111]  Roales, J.; Pedrosa, J.M.; Castillero, P.; Cano, M.; Richardson, T.H. Optimization of mixed Langmuir-Blodgett films of a water insoluble porphyrin in a calixarene matrix for optical gas sensing. Thin Solid Films 2011, 519, 2025–2030, doi:10.1016/j.tsf.2010.10.038.
[112]  De Miguel, G.; Martin-Romero, M.T.; Pedrosa, J.M.; Munoz, E.; Perez-Morales, M.; Richardson, T.H.; Camacho, L. Improvement of optical gas sensing using LB films containing a water insoluble porphyrin organized in a calixarene matrix. J. Mater. Chem. 2007, 17, 2914–2920, doi:10.1039/b701811h.
[113]  Brittle, S.A.; Richardson, T.H.; Hutchinson, J.; Hunter, C.A. Comparing zinc and manganese porphyrin LB films as amine vapor sensing materials. Colloids Surf. A 2008, 321, 29–33, doi:10.1016/j.colsurfa.2008.02.042.
[114]  De Miguel, G.; Martin-Romero, M.T.; Pedrosa, J.M.; Munoz, E.; Perez-Morales, M.; Richardson, T.H.; Camacho, L. Dis-aggregation of an insoluble porphyrin in a calixarene matrix: Characterization of aggregate modes by extended dipole model. Phys. Chem. Chem. Phys. 2008, 10, 1569–1576.
[115]  D’Urso, A.; Cristaldi, D.A.; Fragala, M.E.; Gattuso, G.; Pappalardo, A.; Villari, V.; Micali, N.; Pappalardo, S.; Parisi, M.F.; Purrello, R. Sequence, stoichiometry, and dimensionality control in porphyrin/bis-calix[4]arene self-assemblies in aqueous solution. Chem. Eur. J. 2010, 16, 10439–10446, doi:10.1002/chem.201000803.
[116]  Tabbi, G.; di Mauro, G.; Purrello, R.; Bonomo, R.P. Electrochemical characterization of ordered arrays of metallo-porphyrins in aqueous solution. Dalton Trans. 2011, 40, 4223–4229, doi:10.1039/c0dt01538e.
[117]  De Zorzi, R.; Guidolin, N.; Randaccio, L.; Purrello, R.; Geremia, S. Nanoporous crystals of calixarene/porphyrin supramolecular complex functionalized by diffusion and coordination of metal ions. J. Am. Chem. Soc. 2009, 131, 2487–2489, doi:10.1021/ja808850d.
[118]  De Zorzi, R.; Guidolin, N.; Randaccio, L.; Geremia, S. A bifunctionalized porous material containing discrete assemblies of copper-porphyrins and calixarenes metalated by ion diffusion. CrystEngComm 2010, 12, 4056–4058, doi:10.1039/c0ce00440e.
[119]  Mamardashvili, G.M.; Chizhova, N.V.; Mamardashvili, N.Z. Synthesis of calix[4]arene-bis(tin(IV)porphyrins) and supramolecular complexes on their basis. Russ. J. Inorg. Chem. 2012, 57, 390–397.
[120]  Guo, D.-S.; Chen, K.; Zhang, H.-Q.; Liu, Y. Nano-supramolecular assemblies constructed from water-soluble bis(calix[5]arenes) with porphyrins and their photoinduced electron transfer properties. Chem. Asian J. 2009, 4, 436–445, doi:10.1002/asia.200800410.
[121]  D’Urso, A.; Fragala, M. E.; Purrello, R. From self-assembly to noncovalent synthesis of programmable porphyrins’ arrays in aqueous solution. Chem. Commun. 2012, 48, 8165–8176, doi:10.1039/c2cc31856c.
[122]  Kubat, P.; Sebera, J.; Zalis, S.; Langmaier, J.; Fuciman, M.; Polivka, T.; Lang, K. Charge transfer in porphyrin-calixarene complexes: Ultrafast kinetics, cyclic voltammetry, and DFT calculations. Phys. Chem. Chem. Phys. 2011, 13, 6947–6954.
[123]  Kubat, P.; Lang, K.; Lhotak, P.; Janda, P.; Sykora, J.; Matejicek, P.; Hof, M.; Prochazka, K.; Zelinger, Z. Porphyrin/calixarene self-assemblies in aqueous solution. J. Photochem. Photobiol. A Chem. 2008, 198, 18–25, doi:10.1016/j.jphotochem.2008.02.010.
[124]  Schroeder, T.; Sahu, S.N.; Mattay, J. Molecular capsules derived from resorcin[4]arenes by metal-coordination. Top. Curr. Chem. 2012, 319, 99–124.
[125]  Beyeh, N.K.; Rissanen, K. Dimeric resorcin[4]arene capsules in the solid state. Isr. J. Chem. 2011, 51, 769–780.
[126]  Pinalli, R.; Boccini, F.; Dalcanale, E. Cavitand-based coordination cages: Achievements and current challenges. Isr. J. Chem. 2011, 51, 781–797.
[127]  Jain, V.K.; Kanaiya, P.H. Chemistry of calix[4]resorcinarenes. Russ. Chem. Rev. 2011, 80, 75–102, doi:10.1070/RC2011v080n01ABEH004127.
[128]  Dalgarno, S.J.; Power, N.P.; Atwood, J.L. Metallo-supramolecular capsules. Coord. Chem. Rev. 2008, 252, 825–841, doi:10.1016/j.ccr.2007.10.010.
[129]  Al-Azemi, T.F.; Vinodh, M. Synthesis of porphyrin conjugates based on conformationally rigid and flexible resorcin[4]arene frameworks. Tetrahedron 2011, 67, 2585–2590, doi:10.1016/j.tet.2011.02.024.
[130]  Wu, R.; Al-Azemi, T.F.; Bisht, K.S. Spatially directional multiarm poly(ε-caprolactone) based on resorcin[4]arene cavitand core. Chem. Commun. 2009, 2009, 1822–1824.
[131]  Nakazawa, J.; Mizuki, M.; Shimazaki, Y.; Tani, F.; Naruta, Y. Encapsulation of small molecules by a cavitand porphyrin self-assembled via quadruple hydrogen bonds. Org. Lett. 2006, 8, 4275–4278, doi:10.1021/ol061561j.
[132]  Nakazawa, J.; Sakae, Y.; Aida, M.; Naruta, Y. Kinetic investigations of the process of encapsulation of small hydrocarbons into a cavitand-porphyrin. J. Org. Chem. 2007, 72, 9448–9455, doi:10.1021/jo701299v.
[133]  McKay, M.G.; Cwele, T.; Friedrich, H.B.; Maguire, G.E.M. Microwave-assisted synthesis of a new series of resorcin[4]arene cavitand-capped porphyrin capsules. Org. Biomol. Chem. 2009, 7, 3958–3968, doi:10.1039/b907547j.
[134]  Stefanelli, M.; Monti, D.; Van Axel Castelli, V.; Ercolani, G.; Venanzi, M.; Pomarico, G.; Paolesse, R. Chiral supramolecular capsule by ligand promoted self-assembly of resorcinarene-Zn porphyrin conjugate. J. Porphyr. Phthalocya. 2008, 12, 1279–1288, doi:10.1142/S1088424608000662.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133