全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Molecules  2012 

Acetylated and Methylated β-Cyclodextrins as Viable Soluble Supports for the Synthesis of Short 2′-Oligodeoxyribo-nucleotides in Solution

DOI: 10.3390/molecules171012102

Keywords: cyclodextrin, oligonucleotides, phosphoramidites, soluble support, synthesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Novel soluble supports for oligonucleotide synthesis 11a–c have been prepared by immobilizing a 5′-O-protected 3′-O-(hex-5-ynoyl)thymidine (6 or 7) to peracetylated or permethylated 6-deoxy-6-azido-β-cyclodextrins 10a or 10b by Cu(I)-promoted 1,3-dipolar cycloaddition. The applicability of the supports to oligonucleotide synthesis by the phosphoramidite strategy has been demonstrated by assembling a 3′-TTT-5′ trimer from commercially available 5′-O-(4,4′-dimethoxytrityl)thymidine 3′-phosphoramidite. To simplify the coupling cycle, the 5′-O-(4,4′-dimethoxytrityl) protecting group has been replaced with an acetal that upon acidolytic removal yields volatile products. For this purpose, 5′-O-(1-methoxy-1-methylethyl)-protected 3′-(2-cyanoethyl-N,N-diisopropyl-phosphoramidite)s of thymidine (5a), N4-benzoyl-2′-deoxycytidine (5b) and N6-benzoyl-2′-deoxyadenosine (5c) have been synthesized and utilized in synthesis of a pentameric oligonucleotide 3′-TTCAT-5′ on the permethylated cyclodextrin support 11c.

References

[1]  Beaucage, S.L.; Iyer, R.P. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron 1992, 48, 2223–2311, doi:10.1016/S0040-4020(01)88752-4.
[2]  Hayakawa, Y. Toward an ideal synthesis of oligonucleotides: Development of a novel phosphoramidite method with high capability. Bull. Chem. Soc. Jpn. 2001, 74, 1547–1565, doi:10.1246/bcsj.74.1547.
[3]  Cheruvalleth, S.Z.; Carty, R.L.; Moore, M.H.; Capaldi, D.C.; Krotz, A.H.; Wheeler, P.D.; Turney, B.J.; Craig, S.R.; Gaus, H.J.; Scozzari, A.N.; et al. Synthesis of antisense oligonucleotides: Replacement of 3H-1,2-benzodithiol-3-one 1,1-dioxide (Beaucage reagent) with phenylacetyl disulfide (PADS) as efficient sulfurization reagent: From bench to bulk manufacture of active pharmaceutical ingredient. Org. Process Res. Dev. 2000, 4, 199–204, doi:10.1021/op990077b.
[4]  Pon, R.T.; Yu, S.; Guo, Z.; Deshmukh, R.; Sanghvi, Y.S. Reusable solid-phase supports for oligonucleotides and antisense therapeutics. J. Chem. Soc. Perkin Trans. 1 2001, 2638–2643.
[5]  Sanghvi, Y.S.; Schulte, M. Therapeutic oligonucleotides: The state-of-the-art in purification technologies. Curr. Opin. Drug Discov. Dev. 2004, 6, 765–776.
[6]  Anderson, N.G.; Anderson, N.L.; Taylor, J.; Goodman, J. Large-scale oligonucleotide synthesizers. I. Basic principles and system design. Appl. Biochem. Biotechnol. 1995, 54, 19–42, doi:10.1007/BF02787909.
[7]  Bonora, G.M.; Biancotto, G.; Maffini, M.; Scremin, C.L. Large scale, liquid phase synthesis of oligonucleotides by the phosphoramidite approach. Nucleic Acids Res. 1993, 21, 1213–1217, doi:10.1093/nar/21.5.1213.
[8]  Scremin, C.L.; Bonora, G.M. Liquid phase synthesis of phosphorothioate oligonucleotides on polyethylene glycol support. Tetrahedron Lett. 1993, 29, 4663–4666, doi:10.1016/S0040-4039(00)60651-2.
[9]  Bonora, G.M. Polyethylene-glycol—A high-efficiency liquid-phase (HELP) for the large-scale synthesis of oligonucleotides. Appl. Biochem. Biotechnol. 1995, 54, 3–17, doi:10.1007/BF02787908.
[10]  Bonora, G.M.; Rossin, R.; Zaramella, S.; Cole, D.L.; Eleuteri, A.; Ravikumar, V.T. A liquid-phase process suitable for large-scale synthesis of phosphorothioate oligonucleotides. Org. Process Res. Dev. 2000, 4, 225–231, doi:10.1021/op990096l.
[11]  Ballico, M.; Drioli, S.; Morvan, F.; Xodo, L.; Bonora, G.M. Triple, MPEG-conjugated, helix-forming oligonucleotides (TRIPEGXs): Liquid-phase synthesis of natural and chimeric “All-purine” sequences linked to high molecular weight poly(ethylene glycols). Bioconjug. Chem. 2001, 12, 719–725, doi:10.1021/bc010034b.
[12]  Padiya, K.J.; Salunkhe, M.M. Large Scale, Liquid phase oligonucleotide synthesis by alkyl H-phosphonate approach. Bioorg. Med. Chem. 2000, 8, 337–342, doi:10.1016/S0968-0896(99)00287-4.
[13]  Bonora, G.M.; Scremin, C.L.; Colonna, F.P.; Garbesi, A. HELP (high efficiency liquid phase) new oligonucleotide synthesis on soluble polymeric support. Nucleic Acids Res. 1990, 18, 3155–3159, doi:10.1093/nar/18.11.3155.
[14]  Colonna, F.P.; Scremin, C.L.; Bonora, G.M. Large scale H.E.L.P. synthesis of oligodeoxynucleotides by the hydroxybenzotriazole phosphotriester approach. Tetrahedron Lett. 1991, 32, 3251–3254, doi:10.1016/S0040-4039(00)79736-X.
[15]  De Koning, M.C.; Ghisaidoobe, A.B.T.; Duynstee, H.I.; Kortenaar, P.B.W.T.; Filippov, D.V.; van der Marel, G.A. Simple and efficient solution-phase synthesis of oligonucleotides using extractive work-up. Org. Process Res. Dev. 2006, 10, 1238–1245, doi:10.1021/op060133q.
[16]  Donga, R.A.; Khaliq-Uz-Zaman, S.M.; Chan, T.-H.; Damha, M.J. A novel approach to oligonucleotide synthesis using an imidazolium ion tag as a soluble support. J. Org. Chem. 2006, 71, 7907–7910, doi:10.1021/jo061279q. 16995711
[17]  Dueymes, C.; Sch?nberger, A.; Adamo, I.; Navarro, A.E.; Meyer, A.; Lange, M.; Imbach, J.L.; Link, F.; Morvan, F.; Vasseur, J.J. High-yield solution-phase synthesis of di- and trinucleotide blocks assisted by polymer-supported reagents. Org. Lett. 2005, 7, 3485–3488, doi:10.1021/ol0511777. 16048323
[18]  Adamo, I.; Dueymes, C.; Sch?nberger, A.; Navarro, A.E.; Meyer, A.; Lange, M.; Imbach, J.L.; Link, F.; Morvan, F.; Vasseur, J.J. Solution-phase synthesis of phosphorothioate oligonucleotides using a aolid-supported acyl chloride with H-Phosphonate Chemistry. Eur. J. Org. Chem. 2006, 436–448.
[19]  Kuzuya, A.; Ohnishi, T.; Wasano, T.; Nagaoka, S.; Sumaoka, J.; Ihara, T.; Jyo, A.; Komiyama, M. Efficient guest inclusion by β-cyclodextrin attached to the ends of DNA oligomers upon hybridization to various DNA conjugates. Bioconjug. Chem. 2009, 20, 1643–1649, doi:10.1021/bc900200c.
[20]  Schomburg, G.; Deege, A.; Hinrichs, H.; Hubinger, E.; Husmann, H. Preparation, purification, and analysis of alkylated cyclodextrins. J. High Resol. Chromatogr. 1992, 15, 579–584, doi:10.1002/jhrc.1240150904.
[21]  Schurig, V.; Jung, M.; Schrnalzing, D.; Schleirner, M.; Duvekot, J.; Buyten, J.C.; Peene, J.E.; Mussche, P. CGC enantiomer separation on diluted cyclodextrin derivatives coated on fused silica columns. J. High Resol. Chromatogr. 1990, 13, 470–474, doi:10.1002/jhrc.1240130706.
[22]  Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 2002, 41, 2596–2599, doi:10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.
[23]  Tornoe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67, 3057–3064, doi:10.1021/jo011148j.
[24]  Ogilvie, K.K. The tert-butyldimethylsilyl group as a protecting group in deoxynucleosides. Can. J. Chem. 1973, 51, 3799–3807, doi:10.1139/v73-569.
[25]  Cabral, N.L.D.; Hoeltgebaum Thiessen, L.J.; Doboszwski, B. Protecting group transfer: Unusual method of removal of Tr and TBDMS groups by transetherification. Nucleos. Nucleot. Nucleic Acids 2008, 27, 931–948, doi:10.1080/15257770802257846.
[26]  Khan, A.T.; Ghosh, S.; Choudhury, L.H. A simple and useful synthetic protocol for selective deprotection of tert-butyldimethylsilyl (TBS) ethers. Eur. J. Org. Chem. 2004, 2198–2204.
[27]  De Napoli, L.; Di Fabio, G.; Messere, A.; Montesarchio, D.; Piccialli, G.; Varra, M. A facile solid-phase synthesis of oligonucleotides containing a 3'-3' phosphodiester bond for alternate strand triple-helix formation. Eur. J. Org. Chem. 1998, 2119–2125.
[28]  Nomura, M.; Shuto, S.; Tanaka, M.; Sasaki, T.; Mori, S.; Shigeta, S.; Matsuda, A. Nucleosides and Nucleotides 185. Synthesis and biological activities of 4′α-C-branched chain sugar pyrimidine nucleosides. J. Med. Chem. 1999, 42, 2901–2908, doi:10.1021/jm990050i.
[29]  Kohgo, S.; Yamada, K.; Kitano, K.; Iwai, Y.; Sakata, S.; Ashida, N.; Hayakawa, H.; Nameki, D.; Kodama, E.; Matsuoka, M.; et al. Design, efficient synthesis and anti-HIV activity of 4′-C-cyano- and 4′-C-ethynyl-2′-deoxy purine nucleosides. Nucleos. Nucleot. Nucleic Acids 2004, 23, 671–690, doi:10.1081/NCN-120037508.
[30]  Lan, T.; McLaughlin, L.W. Minor groove hydration is critical to the stability of DNA duplexes. J. Am. Chem. Soc. 2000, 122, 6512–6513, doi:10.1021/ja000686v.
[31]  Oyelere, A.K.; Chen, P.C.; Yao, L.P.; Boguslavsky, N. Heterogeneous diazo-transfer reaction: A facile unmasking of azide groups on amine-functionalized insoluble supports for solid phase synthesis. J. Org. Chem. 2006, 71, 9791–9796, doi:10.1021/jo0618122.
[32]  Petter, R.C.; Salek, J.S.; Sikorski, C.T.; Kumaravel, G.; Lin, F.T. Cooperative binding by aggregated mono-6-(alkylamino)-β-cyclodextrins. J. Am. Chem. Soc. 1990, 112, 3860–3868, doi:10.1021/ja00166a021.
[33]  Zhang, J.; Xiao, P.; Shi, S.; Nie, J. Preparation and characterization of a water soluble methylated β-cyclodextrin/camphorquinone complex. Polym. Adv. Technol. 2009, 20, 723–728, doi:10.1002/pat.1290.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133