The semisynthetic oripavine derivative phenethyl orvinol (PEO), a full agonist at opioid receptors (OR), is an attractive structural motif for developing 18F-labeled PET tracers with a high degree of sensitivity for competition between endogenous and exogenous OR-ligands. The target cold reference compound 6-O-(2-fluoroethyl)-6-O-desmethylphenylethyl orvinol (FE-PEO) was obtained via two separate reaction routes. A three-step synthesis was developed for the preparation of a tosyloxyethyl precursor (TE-TDPEO), the key precursor for a direct, nucleophilic radiofluorination to yield [18F]FE-PEO. The developed radiosynthesis provides the target compound in relevantly high yield and purity, and is adaptable to routine production.
References
[1]
Henriksen, G.; Willoch, F. Imaging of opioid receptors in the central nervous system. Brain 2008, 131, 1171–1196, doi:10.1093/brain/awm255.
[2]
Hammers, A.; Lingford-Hughes, A. Opioid Imaging. Neuroimag. Clin. N. Am. 2006, 16, 529–552, doi:10.1016/j.nic.2006.06.004.
[3]
Lever, J.R. PET and SPECT imaging of the opioid system: Receptors, radioligands and avenues for drug discovery and development. Curr. Pharm. Des. 2007, 13, 33–49, doi:10.2174/138161207779313821.
[4]
Fürst, S.; Hosztafi, S. The chemical and pharmacological importance of morphine analogues. Acta Physiol. Hung. 2008, 95, 3–44, doi:10.1556/APhysiol.95.2008.1.1.
[5]
Richardson, A.; Demoliou-Mason, C.; Barnard, E.A. Guanine nucleotide-binding protein-coupled and -uncoupled states of opioid receptors and their relevance to the determination of subtypes. Proc. Natl. Acad. Sci. USA 1992, 89, 10198–10202, doi:10.1073/pnas.89.21.10198.
[6]
Marton, J.; Wester, H.J.; Willoch, F.; Henriksen, G. PET-imaging of the opioid receptors with labeled PEO derivatives. In Proceedings of the NRC7-Seventh International Conference on Nuclear and Radiochemistry, Budapest, Hungary, 24-29 August 2008; Hungarian Chemical Society: Budapest, Hungary, 2008; p. 241.
[7]
Marton, J.; Schoultz, B.W.; Hjornevik, T.; Drzezga, A.; Yousefi, B.H.; Wester, H.-J.; Willoch, F.; Henriksen, G. Synthesis and evaluation of a full-agonist orvinol for PET-Imaging of opioid receptors: [11C]PEO. J. Med. Chem. 2009, 52, 5586–5589, doi:10.1021/jm900892x.
[8]
Hjornevik, T.; Schoultz, B.W.; Marton, J.; Gjerstad, J.; Drzezga, A.; Henriksen, G.; Willoch, F. Spinal long-term potentiation is associated with reduced opioid neurotransmission in the rat brain. Clin. Physiol. Funct. Imaging 2010, 30, 285–293, doi:10.1111/j.1475-097X.2010.00939.x.
[9]
Linders, J.T.M.; Maat, L. Face selectivity of the Diels-Alder reaction of Thebaine-Like morphinandienes, a computational approach (chemistry of opium alkaloids, Part XXXI). Bull. Soc. Chim. Belg. 1989, 98, 265–276, doi:10.1002/bscb.19890980405.
[10]
Bentley, K.W.; Hardy, D.G. Novel analgesics and molecular rearrangements in the morphine-thebaine group. I. Ketones derived from 6,14-endo-ethenotetrahydrothebaine. J. Am. Chem. Soc. 1967, 89, 3267–3273, doi:10.1021/ja00989a030.
[11]
Bentley, K.W.; Hardy, D.G.; Meek, B. Novel analgesics and molecular rearrangements in the morphine-thebaine group. II. Alcohols derived from 6,14-endo-etheno- and 6,14-endo-ethanotetrahydrothebaine. J. Am. Chem. Soc. 1967, 89, 3273–3280, doi:10.1021/ja00989a031.
[12]
Galynker, I.; Schlyer, D.J.; Dewey, S.L.; Fowler, J.S.; Logan, J.; Galley, S.J.; MacGregor, R.R.; Ferrieri, R.A.; Holland, M.J.; Brodie, J.; et al. Opioid receptor imaging and displacement studies with [6-O-[11C]methyl]buprenorphine in baboon brain. Nucl. Med. Biol. 1996, 23, 325–331, doi:10.1016/0969-8051(95)02087-X.
Coop, A.; Janetka, J.W.; Lewis, J.W.; Rice, K.C. L-Selectride as a general reagent for the O-demethylation and N-decarbomethoxylation of opium alkaloids and derivatives. J. Org. Chem. 1998, 63, 4392–4396, doi:10.1021/jo9801972.
[15]
Bentley, K.W.; Hardy, D.G.; Meek, B. Novel analgesics and molecular rearrangements in the morphine-thebaine group. IV. Acid-catalyzed rearrangements of alcohols of the 6,14-endo-ethenotetrahydrothebaine series. J. Am. Chem. Soc. 1967, 89, 3293–3303.
[16]
Bentley, K.W.; Hardy, D.G. Novel analgesics and molecular rearrangements in the morphine-thebaine group. III. Alcohols of the 6,14-endo-ethenotetrahydrooripavine series and derived analogs of N-allylnormorphine and -norcodeine. J. Am. Chem. Soc. 1967, 89, 3281–3292, doi:10.1021/ja00989a032.
[17]
Marton, J.; Simon, C.; Hosztafi, S.; Szabó, Z.; Márki, á.; Borsodi, A.; Makleit, S. New nepenthone and thevinone derivatives. Bioorg. Med. Chem. 1997, 5, 369–382, doi:10.1016/S0968-0896(96)00257-X.
[18]
Lalonde, M.; Chan, T.H. Use of organosilicon reagents as protective groups in organic synthesis. Synthesis 1985, 9, 817–845, doi:10.1055/s-1985-31361.
[19]
Fulmor, W.; Lancaster, J.E.; Morton, G.O.; Brown, J.J.; Howell, C.F.; Nora, C.T.; Hardy, J.A. Nuclear magnetic resonance studies in the 6, 14-endo-Ethenotetrahydrothebaine Series. J. Am. Chem. Soc. 1967, 89, 3322–3330.
[20]
Uff, B.C.; Mallard, A.S.; Davis, J.A.; Henson, R. NMR spectra and stereochemistry of some 7-substituted 6,14-bridged thebaine derivatives. Magn. Reson. Chem. 1985, 23, 454–459.
[21]
Mazza, S.M.; Erickson, R.H.; Blake, P.R.; Lever, J.R. Two-dimensional homonuclear and heteronuclear correlation NMR studies of diprenorphine: A prototypic 6α, 14α-endo-ethanotetrahydrothebaine. Magn. Reson. Chem. 1990, 28, 675–681.
[22]
Mazza, S.M. Determining C-7 stereochemistry in C-7-substituted 6α,14α-endo-ethano- and 6α, 14α-endo-ethenotetrahydrothebaines by 13C-NMR; a re-analysis. Magn. Reson. Chem. 1993, 31, 444–446, doi:10.1002/mrc.1260310505.