全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Membranes  2012 

Biofouling of Water Treatment Membranes: A Review of the Underlying Causes, Monitoring Techniques and Control Measures

DOI: 10.3390/membranes2040804

Keywords: membrane biofouling, biofilm, extracellular polymeric substances, biofouling control, biofouling monitoring

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biofouling is a critical issue in membrane water and wastewater treatment as it greatly compromises the efficiency of the treatment processes. It is difficult to control, and significant economic resources have been dedicated to the development of effective biofouling monitoring and control strategies. This paper highlights the underlying causes of membrane biofouling and provides a review on recent developments of potential monitoring and control methods in water and wastewater treatment with the aim of identifying the remaining issues and challenges in this area.

References

[1]  Amjad, Z. Reverse Osmosis, Membrane Technology, Water Chemistry and Industrial Application; Van Nostrand Reinhold: New York, NY, USA, 1992.
[2]  Flemming, H.-C.; Griebe, T.; Schaule, G.; Schmitt, J.; Tamachkiarowa, A. Biofouling—The Achille’s heel of membrane processes. Desalination 1997, 113, 215–225, doi:10.1016/S0011-9164(97)00132-X.
[3]  Amy, G. Fundamental understanding of organic matter fouling of membranes. Desalination 2008, 231, 44–51, doi:10.1016/j.desal.2007.11.037.
[4]  Komlenic, R. Rethinking the causes of membrane biofouling. Filtr. Sep. 2010, 47, 26–28, doi:10.1016/S0015-1882(10)70211-1.
[5]  Vrouwenvelder, J.S.; van der Kooij, D. Diagnosis of fouling problems of NF and RO membrane installations by a quick scan. Desalination 2002, 153, 121–124, doi:10.1016/S0011-9164(02)01111-6.
[6]  Kramer, J.F.; Tracey, D.A. The solution to reverse osmosis biofouling. In Proceedings of IDA World Congress on Desalination and Water Use, Abu Dhabi, Saudi Arabia, November 1995; 4, pp. 33–44.
[7]  Abd El Aleem, F.A.; Al-Sugair, K.A.; Alamad, M.I. Biofouling problems in membrane processes for water desalination and reuse in Saudi Arabia. Int. Biodeterior. Biodegrad. 1998, 41, 19–23, doi:10.1016/S0964-8305(98)80004-8.
[8]  Ridgway, H.F. Microbial adhesion and biofouling of reverse osmosis membranes. In Reverse Osmosis Technology: Application for High Pure Water Production; Parekh, B.S., Ed.; Marcel Dekker: New York, NY, USA, 1988; pp. 429–481.
[9]  Ridgway, H.F.; Safarik, J. Biofouling of reverse osmosis membranes. In Biofouling and Biocorrosion in Industrial Water System; Flemming, H.-C., Geesey, G.G., Eds.; Springer Verlag: Heidelberg, Germany, 1991; pp. 81–111.
[10]  Flemming, H.-C. Membrane Technology; Amjad, Z., Ed.; Van Nostrand Reinhold: New York, NY, USA, 1992; pp. 163–209.
[11]  Murphy, A.P.; Moody, C.D.; Riley, R.L.; Lin, S.W.; Murugaverl, B.; Rusin, P. Microbiological damage of cellulose acetate RO membranes. J. Membr. Sci. 2001, 193, 111–121.
[12]  Marshall, K.C.; Blainey, B.L. Role of bacterial adhesion in biofilm formation and biocorrosion. In Biofouling and Biocorrosion in Industrial Water System; Flemming, H.-C., Geesey, G.G., Eds.; Springer-Verlag: Heidelberg, Germany, 1991; pp. 29–46.
[13]  Milstead, C.E.; Riley, R.L. Development of an Improved Cleaning Solution for ROWPU Units; SST Report No.2809–1; Technical Report for Separation Systems Technology: San Diego, CA, USA, 1993.
[14]  Wilbert, M.C. Enhancement of Membrane Fouling Resistance through Surface Modification. A Study Using the Principle of Membrane Fouling and Cleaning To Develop Ways to Enhance Membrane Fouling Resistance; Water Treatment Technology Program Report No. 22; US Department of the Interior, Bureau of Reclamation: Denver, CO, USA, 1997.
[15]  Flemming, H.-C.; Schaule, G. Biofouling on membranes—A microbiological approach. Desalination 1988, 70, 95–119, doi:10.1016/0011-9164(88)85047-1.
[16]  Bendinger, B.; Rijnaarts, H.H.M.; Altendorf, L.; Zehnder, A.J.B. Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl. Environ. Microbiol. 1993, 59, 3937–3977.
[17]  Costerton, J.W.; Lewandowski, Z.; DeBeer, D.; Caldwell, D.; Korber, D.; James, G. Biofilms, the customized microniche. J. Bacteriol. 1994, 176, 2137–2142.
[18]  Marshall, K.C. Mechanisms of bacterial adhesion at solid-water interfaces. In Bacterial Adhesion; Savage, D.C., Fletcher, M., Eds.; Plenum Press: New York, NY, USA, 1985; pp. 133–161.
[19]  Park, N.; Kwon, B.; Kim, I.S.; Cho, J. Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): Characterization, flux decline, and transport parameters. J. Membr. Sci. 2005, 258, 43–54, doi:10.1016/j.memsci.2005.02.025.
[20]  Daniels, S.L. Mechanisms involved in sorption of microorganisms to solid surface. In Adsorption of microorganisms to surface; Bitton, G., Marshall, K.C., Eds.; John Wiley & Sons: New York, NY, USA, 1980; pp. 5–185.
[21]  Mc Eldowney, S.; Fletcher, M. Effect of growth conditions and surface characteristics of aquatic bacteria on their attachment to solid surfaces. J. Gen. Microbiol. 1986, 132, 513–523.
[22]  Ridgway, H.F.; Rigby, M.G.; Argo, D.G. Bacterial adhesion and fouling of reverse osmosis membranes. J. Am. Water Work. Assoc. 1985, 77, 97–106.
[23]  Donlan, R.M.; Pipes, W.O. Selected drinking water characteristics and attached microbial population densities. J. Am. Water Work. Assoc. 1988, 80, 70–76.
[24]  Sadr Ghayeni, S.B.; Beatson, P.J.; Schneider, R.P.; Fane, A.G. Adhesion of wastewater bacteria to reverse osmosis membranes. J. Membr. Sci. 1998, 138, 29–42, doi:10.1016/S0376-7388(97)00196-8.
[25]  Kang, S.-T.; Subramani, A.; Hoek, E.M.V.; Deshusses, M.A.; Matsumoto, M.R. Direct observation of biofouling in cross-flow microfiltration: mechanisms of deposition and release. J. Membr. Sci. 2004, 244, 51–165.
[26]  Al-Ahmad, M.; Abd El-Aleem, F.A.; Mutiri, A.; Ubaisy, A. Biofouling in RO membrane systems. Part 1: Fundamentals and control. Desalination 2000, 132, 173–179, doi:10.1016/S0011-9164(00)00146-6.
[27]  Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633.
[28]  Hijnen, W.A.M.; Biraud, D.; Cornelissen, E.R.; van der Kooij, D. Threshold concentration of easily organic carbon in feedwater for biofouling of spiral-wound membranes. Environ. Sci. Technol. 2009, 43, 4890–4895, doi:10.1021/es900037x.
[29]  Tsuneda, S.; Aikawa, H.; Hayashi, H.; Yuasa, A.; Hirata, A. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol. Lett. 2003, 223, 287–292, doi:10.1016/S0378-1097(03)00399-9.
[30]  Sheng, G.-P.; Yu, H.-Q.; Li, X.-Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 2010, 28, 882–894, doi:10.1016/j.biotechadv.2010.08.001.
[31]  Zhang, X.Q.; Bishop, P.L. Spatial distribution of extracellular polymeric substances in biofilms. J. Environ. Eng. 2001, 127, 850–856, doi:10.1061/(ASCE)0733-9372(2001)127:9(850).
[32]  Branda, S.S.; Vik, A.; Frieldman, L.; Kolter, R. Biofilms: The matrix revisited. Trends Microbiol. 2005, 13, 20–26.
[33]  Mayer, C.; Moritz, R.; Kirschner, C.; Borchard, W.; Maibaum, R.; Wingender, J.; Flemming, H.-C. The role of intermolecular interactions: Studies on model systems for bacterial biofilms. Int. J. Biol. Macromol. 1999, 26, 3–16, doi:10.1016/S0141-8130(99)00057-4.
[34]  Gómez-Suárez, C.; Pasma, J.; Van der Borden, A.J.; Wingender, J.; Flemming, H.-C.; Busscher, H.J.; van der Maei, H.C. Influence of extracellular polymeric substances on deposition and redeposition of Pseudomonas aeruginosa to surfaces. Microbiology 2002, 148, 1161–1169.
[35]  Chen, V.J.; Ma, P.X. Nano-fibrous poly(L-Lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 2004, 25, 2065–2073, doi:10.1016/j.biomaterials.2003.08.058.
[36]  Neilsen, P.H.; Jahn, A. Microbial Extracellular Polymeric Substances: Characterization, Structure and Function; Wingender, J., Neu, T.R., Flemming, H.-C., Eds.; Springer-Verlag: Heidelberg, Germany, 1999; pp. 49–72.
[37]  Rosenberger, S.; Kraume, M. Filterability of activated sludge in membrane reactors. Desalination 2002, 146, 373–379, doi:10.1016/S0011-9164(02)00515-5.
[38]  Pan, X.L.; Liu, J.; Zhang, D.Y.; Chen, X.; Song, W.J.; Wu, F.C. Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge: A fluorescence quenching study. J. Colloid Interface Sci. 2010, 345, 442–447.
[39]  Flemming, H.-C.; Leis, A. Sorption properties of biofilms. In Encyclopedia of Environmental Micrology; Flemming, H.-C., Bitton, G., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2002; Volume 5, pp. 2958–2967.
[40]  Spath, R.; Flemming, H.-C.; Wuertz, S. Sorption properties of biofilms. Water Sci. Technol. 1998, 37, 207–210.
[41]  Liu, Y.; Fang, H.H.P. Influence of extracellular polymeric substance (EPS) on flocculation, settling and dewatering of activated sludge. Crit. Rev. Environ. Sci. Technol. 2003, 33, 237–273.
[42]  Priester, J.H.; Olson, S.G.; Webb, S.M.; Neu, M.P.; Hersman, L.E.; Holden, P.A. Enhanced oxoplolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl. Environ. Microbiol. 2006, 72, 1988–1996, doi:10.1128/AEM.72.3.1988-1996.2006.
[43]  Tansel, B.; Sager, J.; Garland, J.; Xu, S.; Levine, L.; Bisbee, P. Deposition of extracellular polymeric substances and micro-topographical changes on membrane surfaces during intermittent filtration conditions. J. Membr. Sci. 2006, 285, 225–231.
[44]  Fonseca, A.C.; Summers, R.S.; Greenberg, A.R.; Hernandez, M.T. Extracellular polysaccharides, soluble microbial products and natural organic matter impact on nanofiltration membranes flux decline. Environ. Sci. Technol. 2007, 41, 2491–2497, doi:10.1021/es060792i.
[45]  Flemming, H.-C. Reverse osmosis membrane biofouling. Exp. Therm. Fluid Sci. 1997, 14, 382–391.
[46]  Kim, A.S.; Chen, H.; Yuan, R. EPS biofouling in membrane filtration: An analytic modelling study. J. Colloid Interface Sci. 2006, 303, 243–249.
[47]  Allison, D.G.; Maira-Litrán, T.; Gilbert, P. Antimicrobial resistance of biofilms. In Biofilm: Recent Advances in Their Study and Control; Evan, L.V., Ed.; Harwood Academic Publishers: Amsterdam, The Netherlands, 2000; pp. 149–166.
[48]  Her, N.; Amy, G. Identification and characterization of foulants and scalants on NF membranes. In Proceedings of the AWWA Membrane Technology Conference, Atlanta, GA, USA, March 2003.
[49]  Meng, F.; Chae, S.-R.; Drews, A.; Kraumer, M.; Shin, H.-S. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane materials. Water Res. 2009, 43, 1489–1512, doi:10.1016/j.watres.2008.12.044.
[50]  Nguyen, T.; Fan, L.; Roddick, F.A.; Harris, J.L. A comparative study of microfiltration and ultrafiltration of activated sludge-lagoon effluent. Desalination 2009, 236, 208–215.
[51]  Bos, R.; van der Mei, H.C.; Busscher, H.J. Physico-chemistry of initial microbial adhesive interactions—its mechanisms and method for study. FEMS Microbiol. Rev. 1999, 23, 179–229.
[52]  Stoodley, P.; Wilson, S.; Hall-Stoodley, L.; Boyle, J.D.; Lappin-Scott, M.; Costerton, J.W. Growth and detachment of cell clusters from mature mixed species biofilms. Appl. Environ. Microbiol. 2001, 67, 5608–5613, doi:10.1128/AEM.67.12.5608-5613.2001.
[53]  Wolf, G.; Crespo, J.G.; Reis, M.A.M. Optical and spectroscopic methods for biofilm examination and activity analysis in water and wastewater treatment. Rev. Environ. Sci. Biotechnol. 2002, 1, 227–251.
[54]  Neu, T.R.; W?elfl, S.; Lawrence, J.R. Three-dimensional differentiation of phototrophic biofilm constituents by multi-channel confocal and 2-photon laser scanning microscopy. J. Microbiol. Methods 2004, 56, 161–172, doi:10.1016/j.mimet.2003.10.012.
[55]  Blenkinsopp, A.S.; Costerton, J.W. Understanding bacterial biofilms. Trends Biotechnol. 1991, 9, 38–143.
[56]  Surman, S.B.; Walker, J.T.; Goddart, D.T.; Morton, L.H.G.; Keevil, C.W.; Weaver, W.; Skinner, A.; Hanson, K.; Cadwell, D.; Kurtz, J. Comparison of microscope techniques for the examination of biofilms. J. Microbiol. Methods 1996, 25, 57–70, doi:10.1016/0167-7012(95)00085-2.
[57]  Le-Clech, P.; Marselina, Y.; Ye, Y.; Stuetz, R.M.; Chen, V. Visualisation of polysaccharide fouling on microporous membrane using different characterization techniques. J. Membr. Sci. 2007, 290, 36–45, doi:10.1016/j.memsci.2006.12.012.
[58]  Lawrence, J.R.; Swerhome, D.W.; Leppard, G.G.; Araki, T.; Zhang, X.; West, M.M.; Hitchcock, A.P. Scanning transmission X-ray, Laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl. Environ. Microbiol. 2003, 69, 5543–5554, doi:10.1128/AEM.69.9.5543-5554.2003.
[59]  Palmer, R.J., Jr.; Sternberg, C. Modern microscopy in biofilm research: confocal microscopy and other approaches. Curr. Opin. Biotechnol. 1999, 10, 263–268, doi:10.1016/S0958-1669(99)80046-9.
[60]  Hansma, H.G.; Pietrasanta, L.I.; Auerbach, I.D.; Sorenson, C.; Golan, R.; Holden, P. Probing biopolymers with the atomic force microscope: A review. J. Biomater. Sci. Polym. Ed. 2000, 11, 675–683.
[61]  Gilbert, E.S.; Khlebnikov, A.; Meyer-Ilse, W.; Keasling, J.D. Use of soft X-ray microscopy for analysis of early-stage biofilm formation. Water Sci. Technol. 1999, 39, 269–272.
[62]  Ivnitsky, H.; Katz, I.; Minz, D.; Volvovic, G.; Shimoni, E.; Kesselman, E.; Semiat, R.; Dosoretz, C.G. Bacteria community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment. Water Res. 2007, 41, 3924–3935.
[63]  Ridgway, H.F.; Kelly, A.; Justice, C.; Olson, B.H. Microbial fouling of reverse-osmosis membranes used in advanced wastewater treatment technology: Chemical, bacteriological, and ultrastructural analyses. Appl. Environ. Microbiol. 1983, 45, 1066–1084.
[64]  Suci, P.A.; Geesey, G.G.; Tyler, B.J. Integration of Raman microscopy, differential interference contrast microscopy, and attenuated total reflection fourier transform infrared spectroscopy to investigate chlorhexidine spatial and temporal distribution in Canada albicans biofilms. J. Microbiol. Methods 2001, 46, 193–208.
[65]  Schmid, T.; Helmbrecht, C.; Panne, U.; Haisch, C.; Neissner, R. Process analysis of biofilms by photoacoustic spectroscopy. Anal. Bioanal. Chem. 2003, 375, 1124–1129.
[66]  Graft von der Schulenburg, D.A.; Vrouwenvelder, J.S.; Creber, S.A.; van Loosdrecht, M.C.M.; Johns, M.L. Nuclear magnetic resonance microscopy studies of membrane biofouling. J. Membr. Sci. 2008, 323, 37–44.
[67]  Cui, L.; Yao, M.; Ren, B.; Zhang, K.-S. Sensitive and versatile detection of the fouling process and fouling propensity of proteins on polyvinylidene fluoride membranes via surface-enhanced Raman spectroscopy. Anal. Chem. 2011, 83, 1709–1716, doi:10.1021/ac102891g.
[68]  Vrouenvelder, J.S.; Manolarakis, S.A.; Van der Hoek, J.P.; van Paassen, J.A.M.; van der Meer, W.G.J.; van Agtmaal, J.M.C.; Prummel, H.D.M.; Kruithoft, J.C.; van Loosdrecht, M.C.M. Quantitative biofouling diagnosis in full scale nano filtration and reverse osmosis installations. Water Res. 2008, 42, 4856–4868, doi:10.1016/j.watres.2008.09.002.
[69]  Hijnen, W.A.M.; Cornelissen, E.R.; van der Kooij, D. Threshold concentrations of biomass and iron for pressure drop increase in spiral-wound membrane elements. Water Res. 2011, 45, 1607–1616.
[70]  Bereschenko, L.A.; Stams, A.J.M.; Euverink, G.J.W.; van Loosdrecht, M.C.M. Biofilm formation on reverse osmosis membranes is initiated and dominated by Sphinogomonas spp. Appl. Environ. Microbiol. 2010, 76, 2623–2632, doi:10.1128/AEM.01998-09.
[71]  Nielsen, P.H.; Jahn, A. Extraction of EPS. In Microbial Extracellular Polymeric Substances: Characterization, Structure, and Function; Wingender, J., Flemming, H.-C., Neu, T.R., Eds.; Springer: New York, NY, USA, 1999; p. 49.
[72]  Comte, S.; Guibaud, G.; Baudu, M. Relations between extraction protocol for activated sludges extracellular polymeric substances (EPS) and EPS complexion properties. Part I. Comparison of the efficiency of eight EPS extractions methods. Enzym. Microb. Technol. 2006, 38, 237–245.
[73]  Frolund, B.; Palmgren, R.; Keiding, K.; Neilsen, P.H. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 1996, 3, 1479–1758.
[74]  Morgan, J.W.; Forster, C.F.; Evison, L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Res. 1990, 24, 273–750.
[75]  Liu, H.; Fang, H.H.P. Extraction of extracellular polymeric substances (EPS) of sludges. J. Biotechnol. 2002, 95, 249–256.
[76]  Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356, doi:10.1021/ac60111a017.
[77]  Omoike, A.; Chorover, J. Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: Aqueous chemistry and adsorption effects. Biomacromolecules 2004, 5, 1219–1230, doi:10.1021/bm034461z.
[78]  Garrotte, A.; Bonet, R.; Merino, S.; Simonpujol, M.D.; Congregado, F. Occurrence of a capsule in Aeromonas-salmonicida. FEMS Microbiol. Lett. 1992, 95, 127–131, doi:10.1111/j.1574-6968.1992.tb05354.x.
[79]  Fox, A. Carbohydrate profiling of bacteria by gas chromatography-mass spectrometry and their trace detection in complex matrices by gas-chromatography-tandem mass spectrometry. J. Chromatogr. A 1999, 843, 287–300, doi:10.1016/S0021-9673(98)00884-X.
[80]  Wingenger, J.S.M.; Rode, A.; Leis, A.; Flemming, H.C. Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods Enzym. 2001, 336, 302–314, doi:10.1016/S0076-6879(01)36597-7.
[81]  Harding, L.P.; Marshall, V.M.; Elvin, M.; Gu, Y.C.; Laws, A.P. Structural characterization of a perdeuterio-methylated exopolysaccharide by NMR spectroscopy: Characterization of the novel exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus EU23. Carbohydr. Res. 2003, 338, 61–67, doi:10.1016/S0008-6215(02)00354-3.
[82]  Klare, J.; Flemming, H.-C. Monitoring of biofouling in papermill process waters. Water Res. 2000, 34, 3657–3665, doi:10.1016/S0043-1354(00)00094-4.
[83]  Holm-Hansen, O.; Booth, C.R. Measurement of adenosine triphosphate in the ocean and its ecological significance. Limnol. Oceanogr. 1966, 11, 510–519, doi:10.4319/lo.1966.11.4.0510.
[84]  Hobbie, J.E.; Daley, R.J.; Jasper, S. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 1977, 33, 1225–1228.
[85]  Van der Kooij, D. Assimilable organic carbon as an indicator of bacterial regrowth. J. Am. Water Work. Assoc. 1992, 84, 57–65.
[86]  Van der Kooij, D.; Hijnen, W.A.M.; Cornelissen, E.R. Biofouling of Spiral-Wound Membranes in Water Treatment; Water Research Foundation: Denver, CO, USA, 2010.
[87]  Brouwer, H.; Meesters, K.; van Groenestijn, J. Biofouling control in reverse osmosis membranes using rapid biofiltration technology. Desalination 2006, 199, 15–17, doi:10.1016/j.desal.2006.03.133.
[88]  Vrouvenwelder, J.S.; Kappelhof, J.W.N.M.; Heiijman, S.G.J.; Schippers, J.C.; van der Kooij, D. Tools for fouling diagnosis of NF and RO membranes and assessment of the fouling potential of feed water. Desalination 2003, 157, 361–365.
[89]  Saad, M.A. Early discovery of RO membrane fouling and real-time monitoring of plant performance for optimizing cost of water. Desalination 2004, 165, 183–191, doi:10.1016/j.desal.2004.06.021.
[90]  Ho, B.P.; Wu, M.W.; Zeiher, E.H.K.; Chattoraj, M. Method of monitoring Biofouling in Membrane Separation Systems. U.S. Patent 6,699,684, 2 March 2004.
[91]  Kujundzic, E.; Fonseca, A.C.; Evans, E.A.; Peterson, M.; Greenberg, A.R.; Hermandez, M. Ultrasonic monitoring of early-stage biofilm growth on polymeric surfaces. J. Microbiol. Methods 2007, 68, 458–467.
[92]  Mairal, A.P.; Greenberg, A.R.; Krantz, W.B. Investigation of membrane fouling and cleaning using ultrasonic time-domain reflectometry. Desalination 2000, 130, 45–60, doi:10.1016/S0011-9164(00)00073-4.
[93]  Li, J.X.; Sanderson, R.D.; Chai, G.Y. A focus ultrasonic sensor for in-situ detection of protein fouling on tubular ultrafiltration membranes. Sens. Actuators B 2006, 114, 182–191, doi:10.1016/j.snb.2005.04.041.
[94]  Lee, J.; Kim, I.S. Microbial community in seawater reverse osmosis and rapid diagnosis of membrane biofouling. Desalination 2011, 273, 118–128.
[95]  Sung, J.H.; Chun, M.-S.; Choi, H.J. On the behaviour of electrokinetic streaming potential during protein filtration with fully and partially retentive nanopores. J. Colloid Interface Sci. 2003, 264, 195–202, doi:10.1016/S0021-9797(03)00352-7.
[96]  Le-Clech, P.; Chen, V.; Fane, A.G. Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 2006, 284, 17–53.
[97]  Teychene, B.; Loulergue, P.; Guigui, C.; Cabassud, C. Development and use of a novel method for inline characterization of fouling layers electrokinetic properties and for fouling monitoring. J. Membr. Sci. 2011, 370, 45–57, doi:10.1016/j.memsci.2010.12.014.
[98]  Vrouwenvelder, J.S.; van Loosdrecht, M.C.M.; Kruithof, J.C. Early warning of biofouling in spiral wound nanofiltration and reverse osmosis membranes. Desalination 2011, 265, 206–212, doi:10.1016/j.desal.2010.07.053.
[99]  Chen, W.-H.; Hsieh, Y.-H.; Tung, K.-L.; Li, Y.-L.; Lai, S.-C.; Lin, N.-J. An Integrated fouling monitoring technique for a water treatment microfiltration process. Chem. Eng. Technol. 2010, 33, 1269–1275, doi:10.1002/ceat.201000003.
[100]  Gorey, C.; Escobar, I.C.; Gruden, C.L.; Cai, G. Development of microbial sensing membranes. Desalination 2010, 251, 99–105.
[101]  Gogate, P.R. Application of cavitational reactors for water disinfection: current status and path forward. J. Environ. Manag. 2007, 85, 801–815, doi:10.1016/j.jenvman.2007.07.001.
[102]  Saad, M.A. Biofouling prevention in RO polymeric membrane systems. Desalination 1992, 88, 85–105, doi:10.1016/0011-9164(92)80107-K.
[103]  Tr?g?rdh, G. Membrane cleaning. Desalination 1989, 71, 325–335, doi:10.1016/0011-9164(89)85033-7.
[104]  Polanska, M.; Huysman, K.; van Keer, C. Investigation of assimilable organic carbon in flemish drinking water. Water Res. 2005, 39, 2259–2266, doi:10.1016/j.watres.2005.04.015.
[105]  Applegate, L.E; Erkenbrcher, C.W. Monitoring and control of biological activity in Permasep seawater RO plants. Desalination 1987, 65, 331–359, doi:10.1016/0011-9164(87)90141-X.
[106]  Joyce, E.; Phull, S.S.; Lorimer, J.P.; Mason, T.J. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrason. Sonochem. 2003, 10, 315–318.
[107]  Fagan, J.; Waite, T.D. Biofouling control with ferrate (IV). Environ. Sci. Technol. 1983, 17, 123–125, doi:10.1021/es00108a012.
[108]  DeLuca, S.J.; Chao, A.C.; Smallwood, C. Ames test of ferrate treated water. J. Environ. Eng. 1983, 109, 1159–1167, doi:10.1061/(ASCE)0733-9372(1983)109:5(1159).
[109]  Richardson, S.D. Disinfection by-products and other emerging contaminants in drinking water. Trends Anal. Chem. 2003, 22, 666–684, doi:10.1016/S0165-9936(03)01003-3.
[110]  Hammes, F.; Meylan, S.; Salhi, E.; Koster, O.; Egli, T.; von Gunten, U. Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton. Water Res. 2007, 41, 1447–1454, doi:10.1016/j.watres.2007.01.001.
[111]  Baker, J.S.; Dudley, L.Y. Biofouling in membrane systems—A review. Desalination 1998, 118, 81–89, doi:10.1016/S0011-9164(98)00091-5.
[112]  Hu, J.Y.; Wang, Z.S.; Ng, W.J.; Ong, S.L. The effect of water treatment processes on the biological stability of potable water. Water Res. 1999, 33, 2587–2592.
[113]  Lattemann, S. Development of an Environmental Impact Assessment and Decision Support System for Seawater Desalination Plants. Ph.D. Thesis, Delft University of Technology, Delft, the Netherlands, 2010.
[114]  Parrotta, M.J.; Bekdash, F. UV disinfection of small groundwater supplies. J. Am. Water Work. Assoc. 1998, 90, 71–81.
[115]  Lehtola, M.J.; Miettinen, I.T.; Vartiainen, T.; Rantakokko, P.; Hirvonen, A.; Martikainen, P.J. Impact of UV disinfection on microbially available phosphorous, organic carbon, and microbial growth in drinking wate. Water Res. 2003, 37, 1064–1070, doi:10.1016/S0043-1354(02)00462-1.
[116]  Loge, F.J.; Darby, J.L.; Tchobamoglous, G. UV disinfection of wastewater: Probabilistic approach to design. J. Environ. Eng. 1996, 122, 1078–1084, doi:10.1061/(ASCE)0733-9372(1996)122:12(1078).
[117]  Zhou, H.; Smith, D.W. Advance technologies in water and wastewater treatment. J. Environ. Eng. Sci. 2002, 1, 247–264, doi:10.1139/s02-020.
[118]  Parker, J.A.; Darby, J.L. Particle-associated coliform in secondary effluents: shielding from ultra-violet light disinfection. Water Environ. Res. 1995, 67, 1065–1075, doi:10.2175/106143095X133310.
[119]  Harris, G.D.; Adams, V.D.; Sorensen, D.L.; Dupont, R.R. The influence of photoreactivation and water quality on ultraviolet disinfection of secondary municipal wastewater. J. Water Pollut. Control Fed. 1987, 59, 781–787.
[120]  Amon, R.M.W.; Benner, R. Bacterial utilization of different size classes of dissolve organic matter. Limnol. Oceanogr. 1996, 41, 41–54, doi:10.4319/lo.1996.41.1.0041.
[121]  Servais, P.; Laurent, P.; Randon, G. Comparison of the bacterial dynamics in various French distribution systems. J. Water Supply Res. Technol. Aqua 1995, 44, 10–17.
[122]  Charnock, C.; Kj?nn?, O. Assimilable organic carbon and biodegradable dissolved organic carbon in Norwegian raw and drinking waters. Water Res. 2000, 34, 2629–2642, doi:10.1016/S0043-1354(00)00007-5.
[123]  LeChevallier, M.W.; Becker, W.C.; Schorr, P.; Lee, R.G. Evaluating the performance of biologically active rapid filters. J. Am. Water Work. Assoc. 1992, 84, 136–146.
[124]  Bradford, S.M.; Palmer, C.J.; Olson, B.H. Assimilable organic carbon concentrations in Southern California surface and groundwater. Water Res. 1994, 28, 427–435.
[125]  Van der Kooij, D. Drinking Water Microbiology; Mc Feters, G.A., Ed.; Springer Verlag: New York, NY, USA, 1990; pp. 57–87.
[126]  Huck, P.M.; Fedorak, P.M.; Anderson, W.B. Formation and removal of assimilable organic carbon during biological treatment. J. Am. Water Work. Assoc. 1991, 83, 69–80.
[127]  Van der Kooij, D.; Hijnen, W.A.M.; Kruithof, J.C. The effect of ozonation, biological filtration and distribution on the concentration of easily assimilable organic carbon (AOC) in drinking water. Ozone Sci. Eng. 1989, 11, 297–311, doi:10.1080/01919518908552443.
[128]  Visvanathan, C.; Boonthanon, N.; Sathasivan, A.; Jegatheesan, V. Pretreatment of seawater for biodegradable organic content removal using membrane bioreactor. Desalination 2002, 153, 133–140.
[129]  van der Hoek, J.P.; Hofman, J.A.M.H.; Bonné, P.A.C.; Nederlof, M.M.; Vrouwenvelder, H.S. RO treatment: Selection of a pretreatment scheme based on fouling characteristics and operating conditions based on environmental impact. Desalination 2000, 127, 89–101, doi:10.1016/S0011-9164(99)00195-2.
[130]  Escobar, I.C.; Hong, S.; Randall, A.A. Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membranes. J. Membr. Sci. 2000, 175, 1–17, doi:10.1016/S0376-7388(00)00398-7.
[131]  Vrouwenvelder, J.S.; Beyer, F.; Dahmani, K.; Hasan, N.; Galjaard, G.; Kruithof, J.C.; van Loosdrecht, M.C.M. Phosphate limitation to control biofouling. Water Res. 2010, 44, 3454–3466, doi:10.1016/j.watres.2010.03.026.
[132]  Morse, G.K.; Brett, S.W.; Guy, J.A.; Lester, J.N. Review: Phosphorus removal and recovery technologies. Sci. Total Environ. 1998, 212, 69–81, doi:10.1016/S0048-9697(97)00332-X.
[133]  Battistoni, P.; de Angelis, A.; Pavan, P.; Prisciandaro, M.; Cecchi, F. Phosphorous removal from a real anaerobic supernatant by struvite crystallization. Water Res. 2001, 35, 2167–2178.
[134]  Blaney, L.M.; Cinar, S.; SenGupta, A.K. Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res. 2007, 41, 1603–1613, doi:10.1016/j.watres.2007.01.008.
[135]  Jacobs, J.F.; Hasan, M.N.; Pai, I.K.; Hagen, W.R.; van Loosdrecht, M.C. Development of a bionanotechnological phosphate removal system with thermostable ferritin. Biotechnol. Bioeng. 2010, 105, 918–923.
[136]  Eliassen, R.; Tchobanoglous, G. Removal of nitrogen and phosphorus from wastewater. Environ. Sci. Technol. 1969, 3, 536–541, doi:10.1021/es60029a009.
[137]  Fytianos, K.; Voudrias, E.; Raikos, N. Modelling of phosphorous removal from aqueous and wastewater samples using ferric iron. Environ. Pollut. 1998, 101, 123–130, doi:10.1016/S0269-7491(98)00007-4.
[138]  Vasudevan, S.; Sozhan, G.; Ravichandran, S.; Jayaraj, J.; Lakshmi, J.; Sheela, S.M. Studies on the removal of phosphate from drinking water by electrocoagulation process. Ind. Eng. Chem. Res. 2008, 47, 2018–2023.
[139]  Chen, G. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 2004, 38, 11–41, doi:10.1016/j.seppur.2003.10.006.
[140]  Karaca, S.; Gǔrses, A.; Ejer, M.; A?ikildiz, M. Adsorption removal of phosphate from aqueous solutions using raw and calcined dolomite. J. Hazard. Mater. 2006, 128B, 273–279.
[141]  Stensel, H.D. Principal of Biological Phosphorus Removal: Phosphorus and Nitrogen Removal from Municipal Wastewater—Principles and Practices, 2nd ed.; H.K. Lewis: London, UK, 1991.
[142]  Gonzalez, J.E.; Keshavan, N.D. Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 2006, 70, 859–875, doi:10.1128/MMBR.00002-06.
[143]  Xiong, Y.; Liu, Y. Biological control of microbial attachment: A promising alternative for mitigating membrane biofouling. Appl. Microbiol. Biotechnol. 2010, 86, 825–837, doi:10.1007/s00253-010-2463-0.
[144]  Xavier, K.B.; Bassler, B.L. LuxS quorum sensing: More than just a numbers game. Curr. Opin. Microbiol. 2003, 6, 191–197.
[145]  Richards, J.J.; Melander, C. Controlling of bacterial biofilms. ChemBioChem 2009, 10, 2287–2294, doi:10.1002/cbic.200900317.
[146]  Kim, S.J.; Lee, S.Y.; Hong, S.K.; Oh, Y.S.; Seoul, M.J.; Kweon, J.H.; Kim, T.H. Biofouling of reverse osmosis membranes: Microbial quorum sensing and fouling propensity. Desalination 2009, 247, 303–315, doi:10.1016/j.desal.2008.12.033.
[147]  Ponnusamy, K.; Paul, D.; Kim, Y.S.; Kweon, J.H. 2(5H)-Furanone: A prospective strategy for biofouling-control in membrane biofilm bacteria by quorum-sensing inhibition. Braz. J. Microbiol. 2010, 41, 227–234, doi:10.1590/S1517-83822010000100032.
[148]  Kappachery, S.; Paul, D.; Yoon, J.; Kweon, J.H. Vanillin, a potential agent to prevent biofouling of reverse osmosis membranes. Biofouling 2010, 26, 667–672.
[149]  Yeon, K.-M.; Cheong, W.-S.; Oh, H.-S.; Lee, W.-N.; Huang, B.-K.; Lee, C.-H.; Beyenal, H.; Lewandowski, Z. Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environ. Sci. Technol. 2009, 43, 380–385.
[150]  Mc Grath, S. Bacteriophage: Genetics and Molecular Biology; Caister Academic Press: Norfolk, UK, 2007.
[151]  Goldman, G.; Starosvetsky, J.; Armon, R. Inhibition of biofilm on UF membrane by use of specific bacteriophages. J. Membr. Sci. 2009, 342, 145–152, doi:10.1016/j.memsci.2009.06.036.
[152]  Araki, M. Advanced slime control process with bacteriophage. Kogyo Yosui 1986, 332, 25–30.
[153]  Brockhurst, M.A.; Buckling, A.; Rainey, P.B. Spatial heterogeneity and the stability of host-parasite coexistence. J. Evol. Biol. 2006, 19, 374–379.
[154]  Berraud, N.; Storey, M.V.; Moore, Z.P.; Webb, J.S.; Rice, S.A.; Kjelleberg, S. Nitric-oxide- meditated dispersal in single- and multi-species biofilms of clinically and industrially relevant micro-organisms. Microb. Biotechnol. 2009, 2, 370–378.
[155]  Charville, G.W.; Hetric, E.M.; Geer, C.B.; Schoenfisch, M.H. Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release. Biomaterials 2008, 29, 4039–4044.
[156]  Cai, T.B.; Wang, P.G.; Holder, A.A. NO and NO donors. In Nitric oxide donors; Wang, P.G., Cai, T.B., Taniguchi, N., Eds.; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2005; pp. 1–13.
[157]  Mollee, T.R.; Anissimov, Y.G.; Roberts, M.S. Periodic electric field enhanced transport through membranes. J. Membr. Sci. 2006, 278, 290–300, doi:10.1016/j.memsci.2004.10.049.
[158]  Brunner, G.; Okoro, E. Reduction of membrane fouling by means of electric field during ultrafiltration of proteins solutions. Ber. Bunsenges. Phys. Chem. 1989, 93, 1026–1032, doi:10.1002/bbpc.19890930921.
[159]  Jagannadh, S.N.; Muralidhara, H.S. Electrokinetic methods to control membrane fouling. Ind. Eng. Chem. Res. 1996, 35, 1133–1140, doi:10.1021/ie9503712.
[160]  Brors, A. Untersuchungen zum Einfluβ von elektrischen Feldern bei der Querstromfiltration von biologischen Suspensionen. In Fortschritt–Berichte VDI Reihe 3, Nr. 284; VDI-Verlag: Düsseldorf, Germany, 1992.
[161]  Zumbusch, P.V.; Kulcke, W.; Brunner, G. Use of alternating electrical fields as anti-fouling strategy in ultrafiltration of biological suspensions—Introduction of a new experimental procedure for cross flow filtration. J. Membr. Sci. 1998, 142, 75–86, doi:10.1016/S0376-7388(97)00310-4.
[162]  Volk, C.; Bell, K.; Ibrahim, E.; Verges, D.; Amy, G.; Le Chevallier, M. Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water. Water Res. 2000, 34, 3247–3257, doi:10.1016/S0043-1354(00)00033-6.
[163]  Kim, S.-H.; Lee, H.-I.; Yoon, C.-H. Evaluation of flocculation performance using floc characteristics. J. Korean Soc. Water Wastewater 2003, 17, 29–33.
[164]  Shon, H.K.; Vigneswaran, S.; Kim, I.S.; Cho, J.; Ngo, H.H. Effect of pretreatment on the fouling of membranes: Application in biologically treated sewage effluent. J. Membr. Sci. 2004, 234, 111–120, doi:10.1016/j.memsci.2004.01.015.
[165]  Song, K.G.; Kim, Y.; Ahn, K.H. Effect of coagulant addition on membrane fouling and nutrient removal in a submerged membrane bioreactor. Desalination 2008, 221, 467–474, doi:10.1016/j.desal.2007.01.107.
[166]  Tran, T.T.; Shafiquzzaman, M.; Nakajima, J. Control of membrane fouling by coagulant and coagulant aid addition in membrane bioreactor systems. J. Water Environ. Technol. 2010, 8, 203–213, doi:10.2965/jwet.2010.203.
[167]  Wu, J.; Chen, F.; Huang, X.; Geng, W.; Wen, X. Using inorganic coagulants to control membrane biofouling in a submerged membrane bioreactor. Desalination 2006, 197, 124–136, doi:10.1016/j.desal.2005.11.026.
[168]  Henderson, R.; Parsons, S.A.; Jefferson, B. The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Res. 2008, 42, 1827–1845, doi:10.1016/j.watres.2007.11.039.
[169]  Bernhardt, H.; Clasen, J. Flocculation of micro-organisms. J. Water Supply Res. Technol. Aqua 1991, 40, 76–87.
[170]  Pieterse, A.J.H.; Cloot, A. Algal cells and coagulation, flocculation and sedimentation processes. Water Sci. Technol. 1997, 36, 111–118.
[171]  Pivokonsky, M.; Kloucek, O.; Pivokonska, L. Evaluation of the production, composition and aluminum and iron complexation of algogenic organic matter. Water Res. 2006, 40, 3045–3052, doi:10.1016/j.watres.2006.06.028.
[172]  Bernhardt, H.; Hoyer, O.; Schell, H.; Lusse, B. Reaction mechanisms involved in the influence of algogenic matter on flocculation. Z. Wasser Abwasser Forsch. 1995, 18, 18–30.
[173]  Wilf, M.; Alt, S. Application of low fouling RO membrane elements for reclamation of municipal wastewater. Desalination 2000, 132, 11–19, doi:10.1016/S0011-9164(00)00130-2.
[174]  Gabelich, C.J.; Yun, T.I.; Coffey, B.M.; Suffet, I.H. Effects of aluminum sulphate and ferric chloride coagulant residual on polyamide membrane performance. Desalination 2002, 150, 15–30, doi:10.1016/S0011-9164(02)00926-8.
[175]  Bereschenko, L.A.; Prummel, H.; Euverink, G.J.W.; Stams, A.J.M.; van Loosdrecht, M.C.M. Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems. Water Res. 2011, 45, 405–416.
[176]  Kim, S.L.; Chen, J.P.; Ting, Y.P. Study on feed pretreatment for membrane filtration of secondary effluent. Sep. Purif. Technol. 2002, 29, 171–179, doi:10.1016/S1383-5866(02)00073-4.
[177]  Silvestry-Rodriguez, N.; Bright, K.R.; Slack, D.C.; Uhlmann, D.R.; Gerba, C.P. Silver as a residual disinfectant to prevent biofilm formation in water distribution systems. Appl. Environ. Microbiol. 2008, 74, 1639–1641, doi:10.1128/AEM.02237-07.
[178]  Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.Z.; Tam, K.H.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Proteome Res. 2006, 5, 916–924, doi:10.1021/pr0504079.
[179]  Dror-Ehre, A.; Adin, A.; Markovick, G.; Mamane, H. Control biofilm formation in water using molecularly capped silver nanoparticles. Water Res. 2010, 44, 2601–2609.
[180]  Hilal, N.; Al-Khatib, L.; Atkin, B.P.; Kochkodan, V.; Potapchenko, N. Photochemical modification of membrane surfaces for biofouling reducing: A nano-scale study using AFM. Desalination 2003, 158, 65–72, doi:10.1016/S0011-9164(03)00434-X.
[181]  Kim, J.-H.; Lee, K.-H. Effect of PEG additive on membrane formation by phase inversion. J. Membr. Sci. 1998, 138, 153–163, doi:10.1016/S0376-7388(97)00224-X.
[182]  Van der Bruggen, B. Chemical modification of polyethersulfone nanofiltration membranes: a review. J. Appl. Polym. Sci. 2009, 114, 630–642.
[183]  Khulbe, K.C.; Feng, C.; Matsuura, T. The art of surface modification of synthetic polymeric membrane. J. Appl. Polym. Sci. 2010, 115, 855–895, doi:10.1002/app.31108.
[184]  Bae, T.-H.; Tak, T.-M. Effects of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. 2005, 249, 1–8, doi:10.1016/j.memsci.2004.09.008.
[185]  Khayet, M.; Villaluenga, J.P.G.; Valentin, J.L.; Lopez-Manchado, M.A.; Mengual, J.I.; Seoane, B. Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: characterization and application in pervaporation. Polymer 2005, 46, 9881–9891, doi:10.1016/j.polymer.2005.07.081.
[186]  Yan, L.; Li, Y.S.; Xiang, C.B. Preparation of poly(vinylidene fluoride) (PDVF) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer 2005, 46, 7701–7706.
[187]  Bottino, A.; Capannelli, G.; Comite, A. Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination 2002, 146, 35–40, doi:10.1016/S0011-9164(02)00469-1.
[188]  Lin, D.-J.; Chang, C.-L.; Huang, F.-M.; Cheng, L.-P. Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/water/DMF/PVDF system. Polymer 2003, 44, 413–422, doi:10.1016/S0032-3861(02)00731-0.
[189]  Zhang, X.; Du, A.J.; Lee, P.; Sun, D.D.; Leckie, J.O. TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water. J. Membr. Sci. 2008, 313, 44–51, doi:10.1016/j.memsci.2007.12.045.
[190]  Tashiro, T. Antibacterial and bacterium adsorbing macromolecules. Macromol. Mater. Eng. 2001, 286, 63–87.
[191]  Desai, N.P.; Hossainy, S.F.A.; Hubbell, J.A. Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials 1992, 13, 417–420, doi:10.1016/0142-9612(92)90160-P.
[192]  Borkow, G.; Gabbay, J. Copper as a biocidal tool. Curr. Med. Chem. 2005, 12, 2163–2175, doi:10.2174/0929867054637617.
[193]  Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of antibacterial effect of silver ion on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. A 2000, 52, 662–668, doi:10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3.
[194]  Liu, C.X.; Zhang, D.R.; He, Y.; Zhao, X.S.; Bai, R. Modification of membrane surface for anti-biofouling performance: Effect of anti-adhesion and anti-bacteria approaches. J. Membr. Sci. 2010, 346, 121–130, doi:10.1016/j.memsci.2009.09.028.
[195]  Dror-Ehre, A.; Mamane, H.; Belenkova, T.; Markovich, G.; Adin, A. Silver nanoparticles—E. coli interaction in water and effect on E. coli survival. J. Colloid Interface Sci. 2009, 339, 521–526, doi:10.1016/j.jcis.2009.07.052.
[196]  Zodrow, K.; Brunet, L.; Mahendra, S.; Li, D.; Zhang, A.; Li, Q.; Alvarez, P.J.J. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 2009, 43, 715–723, doi:10.1016/j.watres.2008.11.014.
[197]  Chae, S.-R.; Wang, S.; Hendren, Z.D.; Weisner, M.R.; Wantanabe, Y.; Gunsch, C.K. Effect of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control. J. Membr. Sci. 2009, 329, 68–74, doi:10.1016/j.memsci.2008.12.023.
[198]  Liu, P.-S.; Chen, Q.; Wu, S.-S.; Shen, J.; Lin, S.-C. Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. J. Membr. Sci. 2010, 350, 387–394, doi:10.1016/j.memsci.2010.01.015.
[199]  Zhang, Z.; Cheng, S.; Chang, Y.; Jiang, S. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J. Phys. Chem. B 2006, 110, 10799–10804.
[200]  Ye, S.H.; Watanabe, Y.; Iwasaki, K.; Ishihara, K. Novel cellulose acetate membrane blended with phospholipid polymer for hemocompatible filtration system. J. Membr. Sci. 2002, 210, 411–421, doi:10.1016/S0376-7388(02)00421-0.
[201]  Wang, D.; Williams, C.G.; Li, Q.; Sharma, B.; Elisseef, J.H. Synthesis and characterization of a novel degradable phosphate containing hydrogel. Biomaterials 2003, 24, 3969–3980, doi:10.1016/S0142-9612(03)00280-1.
[202]  Ishihara, K.; Ueda, T.; Nakabayashi, N. Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polym. J. 1992, 24, 1259–1269, doi:10.1295/polymj.24.1259.
[203]  Shi, Q.; Su, W.; Zhao, W.; Li, C.; Hu, Z.; Jiang, S.; Zhu, S. Zwitterionic polyethersulfone ultrafiltration membrane with superior antifouling property. J. Membr. Sci. 2008, 319, 271–278, doi:10.1016/j.memsci.2008.03.047.
[204]  Chiang, Y.-C.; Chang, Y.; Higuchi, A.; Chen, W.-Y.; Ruaan, R.-C. Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property. J. Membr. Sci. 2009, 339, 151–159.
[205]  Zhao, Y.-H.; Wee, K.-H.; Bai, R. Highly hydrophilic and low protein-fouling propylene membrane prepared by surface modification with sulfobetaine-based Zwitterionic polymer through a combine surface polymerization method. J. Membr. Sci. 2010, 362, 326–333.
[206]  Zhao, Y.-H.; Zhu, X.-Y.; Wee, K.-H.; Bai, R. Achieving high effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers. J. Phys. Chem. B 2010, 114, 2422–2429, doi:10.1021/jp908194g.
[207]  Ostuni, E.; Chapman, R.G.; Holmlin, R.K.; Takayama, S.; Whitesides, G.M. A survey of structure-property relationships of surface that resist the adsorption of protein. Langmuir 2001, 7, 5605–5620.
[208]  Susanto, H.; Ulbricht, M. Photografted thin polymer hydrogel layer on PES ultrafiltration membranes: Characterization, stability, and influence on separation performance. Langmuir 2007, 23, 7818–7830, doi:10.1021/la700579x.
[209]  Chen, V.; Fan, A.G.; Fell, C.J.D. The use of anionic surfactants for reducing fouling of ultrafiltration membranes: Their effects and optimization. J. Membr. Sci. 1992, 67, 249–261, doi:10.1016/0376-7388(92)80028-I.
[210]  Brink, L.E.S.; Romijn, D.J. Reducing the protein fouling of polysulfone surfaces and polysulfone ultrafiltration membranes: Optimization of the type of pre-adsorbed layer. Desalination 1990, 78, 209–223.
[211]  Watanabe, N.; Shirakawa, T.; Iwahasi, M.; Seimiya, T. Effect of surface charge on absorption of biovine serum albumin as studied by ellipsometry II. Interaction of protein molecules with an anionic monolayer as studied by ellipsometry, radiotracer and surface tension measurements. Colloid Polym. Sci. 1986, 264, 254–260, doi:10.1007/BF01414962.
[212]  Mansouri, J.; Harrisson, S.; Chen, V. Strategies for controlling biofouling in membrane filtration systems: Challenges and opportunities. J. Mater. Chem. 2010, 20, 4567–4586.
[213]  Schwinge, J.; Neal, P.R.; Wiley, D.E.; Fletcher, D.F.; Fane, A.G. Spiral wound modules and spacers: Review and analysis. J. Membr. Sci. 2004, 242, 129–153.
[214]  Williams, C. Membrane fouling and alternative techniques for its alleviation. Membr. Technol. 2000, 124, 4–10, doi:10.1016/S0958-2118(00)80017-8.
[215]  Vrouwenvelder, J.S. Biofouling of Spiral Wound Membrane System. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2009.
[216]  Liao, B.Q.; Bagley, D.M.; Kramer, H.E.; Leppard, G.G.; Liss, S.N. A review of biofouling and its control in membrane separation bioreactors. Water Environ. Res. 2004, 76, 425–436, doi:10.2175/106143004X151527.
[217]  Flemming, H.-C. Biofouling and Biocorrosion in Industrial Water Systems; Flemming, H.-C., Geesey, G.G., Eds.; Lewis Publishers: Chelsea, MI, USA, 1991; pp. 63–89.
[218]  Madaeni, S.S.; Mohamamdi, T.; Moghadam, M.K. Chemical cleaning of reverse osmosis membranes. Desalination 2001, 134, 77–82, doi:10.1016/S0011-9164(01)00117-5.
[219]  Hilal, N.; Ogunbiyi, O.O.; Miles, N.J.; Nigmatullin, R. Methods employed for control of fouling in MF and UF membranes: A comprehensive review. Sep. Sci. Technol. 2005, 40, 1975–2005.
[220]  Pearce, G. Introduction to membrane: Fouling control. Filtr. Sep. 2007, 44, 30–32.
[221]  Lin, J.C.-T.; Lee, D.-J.; Huang, C. Membrane fouling mitigation: Membrane cleaning. Sep. Sci. Technol. 2010, 45, 858–872, doi:10.1080/01496391003666940.
[222]  An, Y.; Wu, B.; Wong, F.S.; Yang, F. Post-treatment of upflow anaerobic sludge blanket effluent by combining the membrane filtration process: Fouling control by intermittent permeation and air sparging. Water Environ. J. 2010, 24, 32–38, doi:10.1111/j.1747-6593.2008.00152.x.
[223]  Cornelissen, E.R.; Vrouwenvelder, J.S.; Heijman, S.G.J.; Viallefont, X.D.; van der Kooij, D.; Wessels, L.P. Periodic air/water cleaning for control of biofouling in spiral wound membrane elements. J. Membr. Sci. 2007, 287, 94–101, doi:10.1016/j.memsci.2006.10.023.
[224]  Ebrahim, S. Cleaning and regeneration of membrane in desalination and wastewater applications: State of the art. Desalination 1994, 96, 225–238, doi:10.1016/0011-9164(94)85174-3.
[225]  L?rincz, A. Ultrasonic cellular disruption of yeast in water-based suspensions. Biosyst. Eng. 2004, 89, 297–308, doi:10.1016/j.biosystemseng.2004.08.012.
[226]  Lamminen, M.O.; Walker, H.W.; Weavers, L.K. Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. J. Membr. Sci. 2004, 237, 213–223, doi:10.1016/j.memsci.2004.02.031.
[227]  Masselin, I.; Chasseray, X.; Laurence, D.B.; Lain, J.-M.; Syzaret, P.-Y.; Lemordant, D. Effect of sonication on polymeric membranes. J. Membr. Sci. 2001, 181, 213–220, doi:10.1016/S0376-7388(00)00534-2.
[228]  Lu, J.-Y.; Du, X.; Lipscomb, G. Cleaning membranes with focused ultrasound beams for drinking water treatment. In Proceedings of 2009 IEEE International Ultrasonics Symposium, Roma, Italy, 20–23 September 2009; pp. 1195–1198.
[229]  Kyll?nen, H.M.; Pirkonen, P.; Nystr?m, M. Membrane filtration enhanced by ultrasound: A review. Desalination 2005, 181, 319–335, doi:10.1016/j.desal.2005.06.003.
[230]  Lamminen, M.O. Ultrasonic Cleaning of Latex Particle Fouled Membranes. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2005.
[231]  Tarazaga, C.C.; Campderrós, M.E.; Padilla, A.P. Physical cleaning by means of electrical field in the ultrafiltration of a biological solution. J. Membr. Sci. 2006, 278, 219–224, doi:10.1016/j.memsci.2005.11.004.
[232]  Agarwal, A.; Xu, H.; Ng., W.J.; Liu, Y. Biofilm detachment by self-collapsing air microbubbles: a potential chemical-free cleaning technology for membrane biofouling. J. Mater. Chem. 2012, 22, 2203, doi:10.1039/c1jm14439a.
[233]  Zondervan, E.; Roffel, B. Evaluation of different cleaning agents used for cleaning ultra-filtration membranes fouled by surface water. J. Membr. Sci. 2007, 216, 67–79.
[234]  Liu, C.; Caothien, S.; Hayes, J.; Caothuy, T.; Otoyo, T.; Ogawa, T. Membrane chemical cleaning: From art to science. Available online: http://www.pall.com/water_8158.asp (accessed on 13 November 2012).
[235]  Thurman, E.M. Organic Chemistry of Natural Waters; Martinus Nijhoff/Dr. W. Junk Publishers: Boston, MA, USA, 1985.
[236]  Rosen, M.J. Surfactant and Interfacial Phenomena, 2nd ed.; Wiley: New York, NY, USA, 1989.
[237]  Ang, W.S.; Lee, S.; Elimelech, M. Chemical and physical aspects of cleaning of organic fouled reverses osmosis membrane. J. Membr. Sci. 2006, 272, 198–210, doi:10.1016/j.memsci.2005.07.035.
[238]  Rosenberg, M.; Doyle, R.J. Microbial Cell Surface Hydrophobicity; ASM: Washington, DC, USA, 1990; pp. 1–38.
[239]  Herzberg, M.; Elimelech, M. Biofouling of reverse osmosis membranes: Role of bio-film-enhanced osmotic pressure. J. Membr. Sci. 2007, 295, 11–20, doi:10.1016/j.memsci.2007.02.024.
[240]  Allie, Z.; Jacobs, E.P.; Maartens, A.; Swart, P. Enzymatic cleaning of ultrafiltration fouled by abattoir effluent. J. Membr. Sci. 2003, 218, 107–116, doi:10.1016/S0376-7388(03)00145-5.
[241]  Loiselle, M.; Anderson, K.W. The use of cellulose in inhibiting biofilm formation from organisms commonly found on medical implants. Biofouling 2003, 19, 77–85.
[242]  Leroy, C.; Delbarre-Ladrat, C.; Ghillebaert, F.; Compere, C.; Combes, D. Influence of subtilising on the adhesion of a marine bacterium which produces mainly proteins as extracellular polymers. J. Appl. Microbiol. 2008, 105, 791–799, doi:10.1111/j.1365-2672.2008.03837.x.
[243]  Brady, D.; Jordan, J. Advances in enzyme immobilisation. Biotechnol. Lett. 2009, 31, 1639–1650, doi:10.1007/s10529-009-0076-4.
[244]  Mikkelsen, L.H.; Keiding, K. Physico-chemical characteristics of full scale sewage sludge with implications to dewatering. Water Res. 2002, 36, 2451–2462, doi:10.1016/S0043-1354(01)00477-8.
[245]  Xu, H.; Liu, Y. Control and cleaning membrane biofouling by energy uncoupling and cellular communication. Environ. Sci. Technol. 2011, 45, 595–601, doi:10.1021/es102911m.
[246]  Kierek-Pearson, K.; Karatan, E. Biofilm development in bacteria. Adv. Appl. Microbiol. 2005, 57, 79–111, doi:10.1016/S0065-2164(05)57003-5.
[247]  Flemming, H.C. Biofouling in water systems—cases, causes, countermeasures. Appl. Environ. Biotechnol. 2002, 59, 629–640, doi:10.1007/s00253-002-1066-9.
[248]  Madaeni, S.S.; Mansourpanah, Y. Chemical cleaning of reverse osmosis membranes fouled by whey. Desalination 2004, 161, 13–24, doi:10.1016/S0011-9164(04)90036-7.
[249]  Chen, J.P.; Kim, S.L.; Ting, Y.P. Optimization of membrane physical and chemical cleaning by a statistically designed approach. J. Membr. Sci. 2003, 219, 27–45, doi:10.1016/S0376-7388(03)00174-1.
[250]  Al-Amoudi, A.; Lovitt, R.W. Fouling strategies and cleaning system of NF membranes and factors affecting cleaning efficiency. J. Membr. Sci. 2007, 303, 4–28, doi:10.1016/j.memsci.2007.06.002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133