The conductivity of fuel cell membranes as well as their mechanical properties at the nanometer scale were characterized using advanced tapping mode atomic force microscopy (AFM) techniques. AFM produces high-resolution images under continuous current flow of the conductive structure at the membrane surface and provides some insight into the bulk conducting network in Nafion membranes. The correlation of conductivity with other mechanical properties, such as adhesion force, deformation and stiffness, were simultaneously measured with the current and provided an indication of subsurface phase separations and phase distribution at the surface of the membrane. The distribution of conductive pores at the surface was identified by the formation of water droplets. A comparison of nanostructure models with high-resolution current images is discussed in detail.
References
[1]
Alberti, G.; Narducci, R.; Sganappa, M. Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix. J. Power Sources 2008, 178, 575–583, doi:10.1016/j.jpowsour.2007.09.034.
[2]
Eisenberg, A. Clustering of ions in organic polymers. A theoretical approach. Macromolecules 1970, 3, 147–154, doi:10.1021/ma60014a006.
[3]
Zhao, Q.; Majsztrik, P.; Benziger, J. Diffusion and interfacial transport of water in Nafion?. J. Phys. Chem. B 2011, 115, 2717–2727, doi:10.1021/jp1112125.
[4]
Satterfield, M.B.; Benziger, J.B. Non-Fickian water vapor sorption dynamics by Nafion membranes. J. Phys. Chem. B 2008, 112, 3693–3704, doi:10.1021/jp7103243.
[5]
Bass, M.; Berman, A.; Singh, A.; Konovalov, O.; Freger, V. Surface structure of Nafion? in vapor and liquid. J. Phys. Chem. B 2010, 114, 3784–3790.
[6]
Bass, M.; Berman, A.; Singh, A.; Konovalov, O.; Freger, V. Surface-induced micelle orientation in Nafion films. Macromolecules 2011, 44, 2893–2899, doi:10.1021/ma102361f.
[7]
Gierke, T.D.; Munn, G.E.; Wilson, F.C. The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle X-ray studies. J. Polym. Sci. Polym. Phys. 1981, 19, 1687–1704.
[8]
Hsu, W.Y.; Gierke, T.D. Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules 1982, 15, 101–105, doi:10.1021/ma00229a020.
[9]
Hsu, W.Y.; Gierke, T.D. Ion transport and clustering in nation perfluorinated membranes. J. Membr. Sci. 1983, 13, 307–326, doi:10.1016/S0376-7388(00)81563-X.
[10]
Schmidt-Rohr, K.; Chen, Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nature Mater. 2008, 7, 75–83, doi:10.1038/nmat2074.
[11]
Gebel, G. Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer 2000, 41, 5829–5838, doi:10.1016/S0032-3861(99)00770-3.
[12]
Rubatat, L.; Rollet, A.L.; Gebel, G.; Diat, O. Evidence of elongated polymeric aggregates in Nafion. Macromolecules 2002, 35, 4050–4055, doi:10.1021/ma011578b.
[13]
Rollet, A.L.; Gebel, G.; Diat, O. A new insight into Nafion structure. J. Phys. Chem. B 2002, 106, 3033–3036, doi:10.1021/jp020245t.
[14]
Rubatat, L.; Gebel, G.; Diat, O. Orientation of Drawn Nafion at Molecular and Mesoscopic Scales. Macromolecules 2004, 37, 7772–7783, doi:10.1021/ma049683j.
[15]
Rubatat, L.; Gebel, G.; Diat, O. Stretching effect on Nafion fibrillar nanostructure. Macromolecules 2007, 40, 9455–9462, doi:10.1021/ma070362s.
[16]
Mauritz, K.A.; Moore, R.B. State of Understanding of Nafion. Chem. Rev. 2004, 104, 4535–4586, doi:10.1021/cr0207123.
[17]
Rao, V.; Friedrich, K.A.; Stimming, U. Part III: Membrane Applications in Industrial Waste Management (including nuclear Nuclear), Environmenatal Engineering and Future Trends in membrane Science Applications in Industrial Waste Management (Including Nuclear), Environmental Engineering and Future Trends in Membrane Science. In Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications; Pabby, A.K., Rizvi, S.S.H., Sastre, A.M., Eds.; CRC Press: New York, NY, USA, 2008.
[18]
Smitha, B.; Sridhar, S.; Khan, A.A. Solid polymer electrolyte membranes for fuel cell applications-A review. J. Membr.Sci. 2005, 259, 10–26, doi:10.1016/j.memsci.2005.01.035.
[19]
Anantaraman, A.V.; Gardner, C.L. Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion. J. Electroanal. Chem. 1996, 414, 115–120, doi:10.1016/S0022-0728(96)04690-6.
[20]
Vol’fkovich, Yu.M.; Sosenkin, V.E.; Nikol’skaya, N.F. Hydrophilic-hydrophobic and sorption properties of the catalyst layers of electrodes in a proton exchange membrane fuel cell: A stage by stage study. Russ. J. Electrochem. 2010, 46, 438–449, doi:10.1134/S1023193510040099.
[21]
Vol’fkovich, Yu.M.; Sosenkinz, V.E.; Nikol’skaya, N.F. Hydrophilic-hydrophobic and sorption properties of the catalyst layers of electrodes in a proton-exchange membrane fuel cell: A stage-by-stage study. Elektrokhimiya 2010, 46, 462–474.
[22]
Derjaguin, B.V.; Muller, V.M.; Toporov, Y.P. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 1975, 53, 314–326, doi:10.1016/0021-9797(75)90018-1.
[23]
Hiesgen, R.; Wehl, I.; Aleksandrova, E.; Roduner, E.; Bauder, A.; Friedrich, K.A. Nanoscale properties of polymer fuel cell materials-A selected review. Int. J. Energy Res. 2010, 34, 1223–1238.
[24]
Hink, S.; Wagner, N.; Bessler, W.; Roduner, E. Impedance spectroscopic investigation of proton conductivity in Nafion using transient electrochemical atomic force microscopy (AFM). Membranes 2012, 2, 237–252, doi:10.3390/membranes2020237.
[25]
Roduner, E.; Hiesgen, R. Spatially resolved Measurements. In Encyclopedia of Electrochemical Power Sources; Garche, J., Dyer, C., Moseley, P., Ogumi, Z., Rand, D., Scrosatti, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 775–786.
[26]
Hiesgen, R.; Haiber, J. Structural properties: Atomic force microscopy. In Encyclopedia of Electrochemical Power Sources; Garche, J., Dyer, C., Moseley, P., Ogumi, Z., Rand, D., Scrosatti, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 696–717.
[27]
O'Dea, J.R.; Buratto, S.K. Phase Imaging of Proton Exchange Membranes under Attractive and Repulsive Tip Sample Interaction Forces. J. Phys. Chem. B 2011, 115, 1014–1020.
[28]
Sanchez, D.G.; Diaz, D.G.; Hiesgen, R.; Wehl, I.; Friedrich, K.A. Oscillations of PEM fuel cells at low cathode humidification. J. Electroanal. Chem. 2010, 649, 219–231, doi:10.1016/j.jelechem.2010.04.005.
[29]
Gebel, G.; Lyonnard, S.; Mendil-Jakani, H.; Morin, A. The kinetics of water sorption kinetics in Nafion? membranes: A small-angle neutron scattering study. J. Phys. Conds. Matter 2011, 23, 234107:–1-7.
[30]
Choi, P.; Jalani, N.H.; Datta, R. Thermodynamics and proton transport in Nafion?. II. Proton diffusion mechanisms and conductivity. J. Electrochem. Soc. 2005, 152, E123–E130, doi:10.1149/1.1859814.
[31]
Haubold, H.G.; Vad, T.; Jungbluth, H.; Hiller, P. Nano structure of Nafion: A SAXS study. Electrochim. Acta 2001, 46, 1559–1563, doi:10.1016/S0013-4686(00)00753-2.
[32]
Zhang, S.; Yuan, X.Z.; Hiesgen, R.; Friedrich, K.A.; Wang, H. Effect of open circuit voltage on degradation of a short proton exchange membrane fuel cell stack with bilayer membrane configurations. J. Power Sources 2012, 205, 290–300, doi:10.1016/j.jpowsour.2012.01.031.
[33]
Yuan, X.Z.; Zhang, S.; Ban, S.; Huang, C.; Wang, H.; Singara, V.; Fowler, M.; Hiesgen, R.; Schulze, M.; Haug, A.; Friedrich, K.A. Degradation of a PEM fuel cell stack with Nafion? membranes of different thicknesses. Part II: Ex situ diagnosis. J. Power Sources 2012, 205, 324–334, doi:10.1016/j.jpowsour.2012.01.074.
[34]
Aleksandrova, E.; Hiesgen, R.; Eberhard, D.; Friedrich, K.A.; Kaz, T.; Roduner, E. Nanometer scale visualization of ionic channels at the surface of a proton exchange membrane. ChemPhysChem 2007, 8, 519–522, doi:10.1002/cphc.200600704.
[35]
Aleksandrova, E.; Hiesgen, R.; Eberhard, D.; Friedrich, K.A.; Roduner, E. Electrochemical atomic force microscopy study of proton conductivity in a Nafion? Membrane. Phys. Chem. Chem. Phys. 2007, 9, 2735–2743.