全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Semi-supervised locality dimensionality reduction
半监督局部维数约减

Keywords: 成对约束,局部信息,维数约减,判别分析算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

在挖掘和分析高维数据任务中,有时只能获得有限的成对约束信息(must-link约束和cannot-link约束),由于缺乏数据类标号信息,监督维数约减方法常常不能得到满意的结果。在这种情况下,使用大量的无标号样本可以提高算法的性能。文中借助于成对约束信息和大量无标号样本,提出半监督局部维数约减方法(SLDR)。SLDR集成数据的局部信息和成对约束寻找一个最优投影,当数据被投影到低维空间时,不仅cannot-link约束中样本点对之间距离更远、must-link约束中样本点对之间距离更近,数据的内在几何信息还被保持。而且SLDR能推广为非线性方法,使之能够适应非线性数据的维数约减。在各种数据集上的实验结果充分验证了所提出算法的有效性。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133