Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH 4) as the fuel, and hydrogen peroxide (H 2O 2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH 4/H 2O 2 fuel cells using Pt electrodes is studied at room temperature. Two?commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC’s performance. Cell polarization, power density, stability, and durability tests are used in the membranes’ evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.
References
[1]
Santos, D.M.F.; Sequeira, C.A.C. Sodium borohydride as a fuel for the future. Renew. Sustain. Energy Rev. 2011, 15, 3980–4001, doi:10.1016/j.rser.2011.07.018.
[2]
Ma, J.; Choudhury, N.A.; Sahai, Y. A comprehensive review of direct borohydride fuel cells. Renew. Sustain. Energy Rev. 2010, 14, 183–199, doi:10.1016/j.rser.2009.08.002.
[3]
Ponce de Leon, C.; Walsh, F.C. Fuel cells—Exploratory fuel cells: Sodium borohydride fuel cells. In Encyclopedia of Electrochemical Power Sources, 1st; Garche, J., Ed.; Elsevier: Amsterdam, the Netherlands, 2009; pp. 192–205.
[4]
Ponce de Leon, C.; Walsh, F.C.; Pletcher, D.; Browning, D.J.; Lakeman, J.B. Direct borohydride fuel cells. J. Power Sources 2006, 155, 172–181, doi:10.1016/j.jpowsour.2006.01.011.
[5]
Demirci, U.B. Direct liquid-feed fuel cells: Thermodynamic and environmental concerns. J. Power Sources 2007, 169, 239–246, doi:10.1016/j.jpowsour.2007.03.050.
[6]
Santos, D.M.F.; Sequeira, C.A.C. On the electrosynthesis of sodium borohydride. Int. J. Hydrog. Energy 2010, 35, 9851–9861, doi:10.1016/j.ijhydene.2010.01.129.
[7]
Choudhury, N.A.; Raman, R.K.; Sampath, S.; Shukla, A.K. An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. J. Power Sources 2005, 143, 1–8, doi:10.1016/j.jpowsour.2004.08.059.
[8]
Raman, R.K.; Choudhury, N.A.; Shukla, A.K. A high output voltage direct borohydride fuel cell. Electrochem. Solid-State Lett. 2004, 7, A488–A491, doi:10.1149/1.1817855.
[9]
Demirci, U.B. Direct borohydride fuel cell: Main issues met by the membrane-electrodes-assembly and potential solutions. J. Power Sources 2007, 172, 676–687, doi:10.1016/j.jpowsour.2007.05.009.
[10]
Yi, L.; Song, Y.; Yi, W.; Wang, X.; Wang, H.; He, P.; Hu, B. Carbon supported Pt hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells. Int. J. Hydrog. Energy 2011, 36, 11512–11518.
[11]
Santos, D.M.F.; Sequeira, C.A.C. Cyclic voltammetry investigation of borohydride oxidation at a gold electrode. Electrochim. Acta 2010, 55, 6775–6781.
[12]
Santos, D.M.F.; Sequeira, C.A.C. Chronopotentiometric investigation of borohydride oxidation at a gold electrode. J. Electrochem. Soc. 2010, 157, F16–F21, doi:10.1149/1.3256136.
[13]
Yi, L.; Song, Y.; Wang, X.; Yi, L.; Hu, J.; Su, G.; Yi, W.; Yan, H. Carbon supported palladium hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells. J. Power Sources 2012, 205, 63–70, doi:10.1016/j.jpowsour.2012.01.017.
[14]
Sanli, E.; Uysal, B.Z.; Aksu, M.L. The oxidation of NaBH4 on electrochemically treated silver electrodes. Int. J. Hydrog. Energy 2008, 33, 2097–2104, doi:10.1016/j.ijhydene.2008.01.049.
[15]
Liu, B.H.; Li, Z.P.; Suda, S. Anodic oxidation of alkali borohydrides catalyzed by nickel. J. Electrochem. Soc. 2003, 150, A398–A402, doi:10.1149/1.1553785.
[16]
Santos, D.M.F.; Sequeira, C.A.C. Zinc anode for direct borohydride fuel cells. J. Electrochem. Soc. 2010, 157, B13–B19, doi:10.1149/1.3247540.
[17]
Tegou, A.; Armyanov, S.; Valova, E.; Steenhaut, O.; Hubin, A.; Kokkinidis, G.; Sotiropoulos, S. Mixed platinum-gold electrocatalysts for borohydride oxidation prepared by the galvanic replacement of nickel deposits. J. Electroanal. Chem. 2009, 634, 104–110, doi:10.1016/j.jelechem.2009.07.016.
[18]
Molina Concha, B.; Chatenet, M. Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt-Ag electrodes in basic media Part I: Bulk electrodes. Electrochim. Acta 2009, 54, 6119–6129, doi:10.1016/j.electacta.2009.05.027.
[19]
Cao, D.; Chen, D.; Lan, J.; Wang, G. An alkaline direct NaBH4-H2O2 fuel cell with high power density. J. Power Sources 2009, 190, 346–350, doi:10.1016/j.jpowsour.2008.12.134.
Yi, L.; Song, Y.; Liu, X.; Wang, X.; Zou, G.; He, P.; Yi, W. High activity of Au-Cu/C electrocatalyst as anodic catalyst for direct borohydride-hydrogen peroxide fuel cell. Int. J. Hydrog. Energy 2011, 36, 15775–15782.
[22]
Atwan, M.H.; Northwood, D.O.; Gyenge, E.L. Evaluation of colloidal Os and Os-alloys (Os-Sn, Os-Mo and Os-V) for electrocatalysis of methanol and borohydride oxidation. Int. J. Hydrog. Energy 2005, 30, 1323–1331, doi:10.1016/j.ijhydene.2005.04.010.
[23]
Cao, D.; Sun, L.; Wang, G.; Lv, Y.; Zhang, M. Kinetics of hydrogen peroxide electroreduction on Pd nanoparticles in acidic medium. J. Electroanal. Chem. 2008, 621, 31–37, doi:10.1016/j.jelechem.2008.04.007.
[24]
Bessette, R.R.; Cichon, J.M.; Dischert, D.W.; Dow, E.G. A study of cathode catalysis for the aluminium hydrogen peroxide semi-fuel cell. J. Power Sources 1999, 80, 248–253, doi:10.1016/S0378-7753(98)00265-1.
Adams, B.D.; Ostrom, C.K.; Chen, A. Highly active Pd-Pt catalysts for the electrochemical reduction of H2O2. J. Electrochem. Soc. 2011, 158, B434–B439.
[27]
Sun, L.; Cao, D.; Wang, G. Pd-Ru/C as the electrocatalyst for hydrogen peroxide reduction. J. Appl. Electrochem. 2008, 38, 1415–1419, doi:10.1007/s10800-008-9581-8.
[28]
Miao, X.M.; Yuan, R.; Chai, Y.Q.; Shi, Y.T.; Yuan, Y.Y. Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode. J. Electroanal. Chem. 2008, 612, 157–163, doi:10.1016/j.jelechem.2007.09.026.
[29]
Stewart, K.L.; Gewirth, A.A. Mechanism of electrochemical reduction of hydrogen peroxide on copper in acidic sulfate solutions. Langmuir 2007, 23, 9911–9918, doi:10.1021/la7013557.
[30]
Gu, L.; Luo, N.; Miley, G.H. Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell. J. Power Sources 2007, 173, 77–85, doi:10.1016/j.jpowsour.2007.05.005.
[31]
Santos, D.M.F.; Saturnino, P.G.; Lobo, R.F.M.; Sequeira, C.A.C. Direct borohydride/peroxide fuel cells using Prussian Blue cathodes. J. Power Sources 2012, 208, 131–137, doi:10.1016/j.jpowsour.2012.02.016.
[32]
Santos, D.M.F.; Sequeira, C.A.C. Effect of membrane separators on the performance of direct borohydride fuel cells. J. Electrochem. Soc. 2012, 159, B126–B132, doi:10.1149/2.024202jes.
[33]
Couture, G.; Alaaeddine, A.; Boschet, F.; Ameduri, B. Polymeric materials as anion-exchange membranes for alkaline fuel cells. Prog. Polym. Sci. 2011, 36, 1521–1557, doi:10.1016/j.progpolymsci.2011.04.004.
[34]
Wu, H.; Wang, C.; Liu, Z.; Mao, Z. Influence of operation conditions on direct NaBH4/H2O2 fuel cell performance. Int. J. Hydrog. Energy 2010, 35, 2648–2651, doi:10.1016/j.ijhydene.2009.04.020.
[35]
Ma, J.; Choudhury, N.A.; Sahai, Y.; Buchheit, R.G. A high performance direct borohydride fuel cell employing cross-linked chitosan membrane. J. Power Sources 2011, 196, 8257–8264.
[36]
Aziznia, A.; Oloman, C.W.; Gyenge, E.L. A Swiss-roll liquid-gas mixed-reactant fuel cell. J. Power Sources 2012, 212, 154–160, doi:10.1016/j.jpowsour.2012.03.047.
[37]
Santos, D.M.F.; Sequeira, C.A.C. Polymeric membranes for direct borohydride fuel cells: A comparative study. ECS Transactions 2010, 25, 111–122.
[38]
Smith, B.; Sridhar, S.; Khan, A.A. Solid polymer electrolyte membranes for fuel cell applications—A review. J. Membrane Sci. 2005, 259, 10–26, doi:10.1016/j.memsci.2005.01.035.
[39]
Slade, S.; Campbell, S.A.; Ralph, T.R.; Walsh, F.C. Ionic conductivity of an extruded Nafion 1100 EW series of membranes. J. Electrochem. Soc. 2002, 149, A1556–A1564, doi:10.1149/1.1517281.
[40]
Bendert, J.C.; Papadias, D.D.; Myers, D.J. The effect of Na+ impurities on the conductivity and water uptake of Nafion 115 polymer electrolyte fuel cell membranes. J. Electrochem. Soc. 2010, 157, B1486–B1490, doi:10.1149/1.3479188.
[41]
Prakash, P.; Hoskins, D.; SenGupta, A.K. Application of homogeneous and heterogeneous cathion-exchange membranes in coagulant recovery from water treatment plant residuals using Donnan membrane process. J. Membrane Sci. 2004, 237, 131–144, doi:10.1016/j.memsci.2004.03.016.
[42]
Sahu, A.K.; Pitchumani, S.; Sridhar, P.; Shukla, A.K. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview. Bull. Mater. Sci. 2009, 32, 285–294, doi:10.1007/s12034-009-0042-8.
[43]
Zhang, H.; Huang, H.; Shen, P.K. Methanol-blocking Nafion composite membranes fabricated by layer-by-layer self-assembly for direct methanol fuel cells. Int. J. Hydrog. Energy 2012, 37, 6875–6879, doi:10.1016/j.ijhydene.2012.01.066.
[44]
Yu, T.L. Nafion/PTFE composite membranes for fuel cell applications. J. Polym. Res. 2004, 11, 217–224, doi:10.1023/B:JPOL.0000043408.24885.c6.
[45]
Cheng, H.; Scott, K.; Lovell, K.V.; Horsfall, J.A.; Waring, S.C. Evaluation of new ion exchange membranes for direct borohydride fuel cells. J. Membrane Sci. 2007, 288, 168–174, doi:10.1016/j.memsci.2006.11.014.
[46]
Li, Z.P.; Liu, B.H.; Arai, K.; Suda, S. Development of the direct borohydride fuel cell. J. Alloy. Compd. 2005, 404-406, 648–652, doi:10.1016/j.jallcom.2005.01.130.
[47]
Yang, C.-C.; Li, Y.J.; Chiu, S.-J.; Lee, K.-T.; Chien, W.-C.; Huang, C.-A. A direct borohydride fuel cell based on poly(vinyl alcohol)/hydroxyapatite composite polymer electrolyte membrane. J. Power Sources 2008, 184, 95–98, doi:10.1016/j.jpowsour.2008.06.042.
[48]
Ma, J.; Sahai, Y.; Buchheit, R.G. Evaluation of multivalent phosphate cross-linked chitosan biopolymer membrane for direct borohydride fuel cells. J. Power Sources 2012, 202, 18–27, doi:10.1016/j.jpowsour.2011.11.003.
[49]
Santos, D.M.F.; Sequeira, C.A.C. Sodium borohydride determination by measurement of open circuit potentials. J. Electroanal. Chem. 2009, 627, 1–8, doi:10.1016/j.jelechem.2008.12.009.
[50]
Sequeira, C.A.C.; Hooper, A. Solid State Batteries; Martin Nijhoff Publishers: Dordrecht, the Netherlands, 1985.
[51]
Lakeman, J.B.; Rose, A.; Pointon, K.D.; Browning, D.J.; Lovell, K.V.; Waring, S.C.; Horsfall, J.A. The direct borohydride fuel cell for UUV propulsion power. J. Power Sources 2006, 162, 765–772, doi:10.1016/j.jpowsour.2005.07.022.