全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Radon和解析FourierMellin变换的尺度

Keywords: Radon变换,模式识别,FourierMellin变换,不变性分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于正交矩对噪声鲁棒性强、重建效果好,因此被广泛应用于目标识别与分类中,但是正交矩本质上缺乏尺度变换不变性,而且必要的图像二值化与规一化过程会引入重采样与重量化误差。为此,在研究现有正交矩的基础上,提出了一种基于Radon变换和解析FourierMellin变换的尺度与旋转不变的目标识别算法。该算法首先直接对目标灰度图像进行Radon变换,然后对Radon变换结果进行进一步解析,通过FourierMellin变换将原图像的旋转变化转化为相位变化,将原图像的尺度变化转化为幅度变化;最后,通过定义一旋转与尺度不变函数,同时利用不变函数的4种特征,再应用k近邻法实现分类。理论与实验结果表明,由于避免了正交矩方法存在的重采样与重量化误差,该算法的分类精度高于基于正交矩的分类方法,而且对白噪声的鲁棒性也显著高于基于正交矩的识别与分类方法。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133