全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

最小描述长度优化下的医学图像统计形状建模

Keywords: 统计形状模型,最小描述长度,点对应问题,自动标定特征点

Full-Text   Cite this paper   Add to My Lib

Abstract:

统计形状模型(SSM)是有效的图像处理与分析方法。为了建立模型,需要从形状样本集中提取出具有对应关系的轮廓采样点集合,这是决定模型性能的关键。传统的手动标定这些点集来确保对应关系枯燥耗时且带有主观性,更难以向高维拓展。对形状建立逐层的多尺度参数表示,基于最小描述长度(MDL),在粗尺度上建立反映点对应程度的目标函数并最小化,提出首先确保粗尺度上具有最优意义的点对应,同时在精尺度上使用最便捷的弧长参数函数来确定特征点,完成感兴趣目标的快速统计形状建模,进而统计分析以验证模型性能,为后续图像分割或定量分析打下基础。实验对肌肉骨骼核磁共振成像(MRI)中椎骨、椎间盘以及半月板等具有临床意义的结构建立了统计形状模型,验证了本文方法与手动取点相比具有客观可重复性且更加简洁,与单一尺度下的MDL方法相比时间效率更高。基于此模型的图像分割与基于手动建模的分割相比,误差相当或有所降低。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133