全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Membranes  2012 

A Composite Membrane of Caesium Salt of Heteropolyacids/Quaternary Diazabicyclo-Octane Polysulfone with Poly (Tetrafluoroethylene) for Intermediate Temperature Fuel Cells

DOI: 10.3390/membranes2030384

Keywords: composite membrane, intermediate temperature fuel cells, heteropolyacids, microporous PTFE, polysulfone

Full-Text   Cite this paper   Add to My Lib

Abstract:

Inorganic-organic composite electrolyte membranes were fabricated from Cs XH 3?XPMo 12O 40 (CsPOMo) and quaternary diazabicyclo-octane polysulfone (QDPSU) using a polytetrafluoroethylene (PTFE) porous matrix for the application of intermediate temperature fuel cells. The CsPOMo/QDPSU/PTFE composite membrane was made proton conducting by using a relatively low phosphoric acid loading, which benefits the stability of the membrane conductivity and the mechanical strength. The casting method was used in order to build a thin and robust composite membrane. The resulting composite membrane films were characterised in terms of the elemental composition, membrane structure and morphology by EDX, FTIR and SEM. The proton conductivity of the membrane was 0.04 S cm ?1 with a H 3PO 4 loading level of 1.8 PRU (amount of H 3PO 4 per repeat unit of polymer QDPSU). The fuel cell performance with the membrane gave a peak power density of 240 mW cm ?2 at 150 °C and atmospheric pressure.

References

[1]  Norby, T. The promise of protonics. Nature 2001, 410, 877–878, doi:10.1038/35073718.
[2]  Yang, C.; Costamagna, P.; Srinivasan, S.; Benziger, J.; Bocarsly, A.B. Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J. Power Sources 2001, 103, 1–9, doi:10.1016/S0378-7753(01)00812-6.
[3]  Li, M.; Scott, K.; Wu, X. A poly (R1R2R3)N+/H3PO4 composite membrane for phosphoric acid polymer electrolyte membrane fuel cells. J. Power Sources 2009, 194, 811–814, doi:10.1016/j.jpowsour.2009.06.067.
[4]  Scott, K.; Pilditch, S.; Mamlouk, M. Modelling and experimental validation of a high temperature polymer electrolyte fuel cell. J. Appl. Electrochem. 2007, 37, 1245–1259, doi:10.1007/s10800-007-9414-1.
[5]  Li, Q.; Jensen, J.O.; Savinell, R.F.; Bjerrum, N.J. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 2009, 34, 449–477, doi:10.1016/j.progpolymsci.2008.12.003.
[6]  Boysen, D.A.; Uda, T.; Chisholm, C.R.I.; Haile, S.M. High-performance solid acid fuel cells through humidity stabilization. Science 2004, 303, 68–70, doi:10.1126/science.1090920. 14631049
[7]  Xu, C.; Wu, X.; Wang, X.; Mamlouk, M.; Scott, K. Composite membranes of polybenzimidazole and caesium-salts-of heteropolyacids for intermediate temperature fuel cells. J. Mater. Chem. 2011, 21, 6014–6019, doi:10.1039/c1jm10093a.
[8]  Wu, X.; Verma, A.; Scott, K. A Sb-doped SnP2O7 solid proton conductor for intermediate temperature fuel cells. Fuel Cells 2008, 8, 453–458, doi:10.1002/fuce.200800032.
[9]  Otomo, J.; Minagawa, N.; Wen, C.J.; Eguchi, K.; Takahashi, H. Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics 2003, 156, 357–369, doi:10.1016/S0167-2738(02)00746-4.
[10]  Wang, X.; Xu, C.; Golding, B.T.; Sadeghi, M.; Cao, Y.; Scott, K. A novel phosphoric acid loaded quaternary 1,4-diazabicyclo-[2.2.2]-octane polysulfone membrane for intermediate temperature fuel cells. Int. J. Hydrog. Energy 2011, 36, 8550–8556, doi:10.1016/j.ijhydene.2011.03.143.
[11]  Lobato, J.; Ca?izares, P.; Rodrigo, M.A.; Ubeda, D.; Pinar, F.J. A novel titanium PBI-based composite membrane for high temperature PEMFCs. J. Memb. Sci. 2011, 369, 105–111, doi:10.1016/j.memsci.2010.11.051.
[12]  Xu, C.; Cao, Y.; Kumar, R.; Wu, X.; Wang, X.; Scott, K. A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J. Mater. Chem. 2011, 21, 11359–11364, doi:10.1039/c1jm11159k.
[13]  Li, M.; Scott, K. A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications. Electrochim. Acta 2010, 55, 2123–2128, doi:10.1016/j.electacta.2009.11.044.
[14]  Xing, D.; He, G.; Hou, Z.; Ming, P.; Song, S. Preparation and characterization of a modified montmorillonite/sulfonated polyphenylether sulfone/PTFE composite membrane. Int. J. Hydrog. Energy 2011, 36, 2177–2183, doi:10.1016/j.ijhydene.2010.11.022.
[15]  Li, M.; Shao, Z.; Scott, K. A high conductivity Cs2.5H0.5PMo12O40/polybenzimidazole (PBI)/H3PO4 composite membrane for proton-exchange membrane fuel cells operating at high temperature. J. Power Sources 2008, 183, 69–75, doi:10.1016/j.jpowsour.2008.04.093.
[16]  Liu, Z.; Wainright, J.S.; Savinell, R.F. High-temperature polymer electrolytes for PEM fuel cells: Study of the oxygen reduction reaction (ORR) at a Pt–polymer electrolyte interface. Chem. Eng. Sci. 2004, 59, 4833–4838, doi:10.1016/j.ces.2004.09.024.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133