全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Membranes  2012 

UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

DOI: 10.3390/membranes2020307

Keywords: photo-polymerization, methacrylate, polymer electrolyte, cellulose hand-sheets, nanoscale microfibrillated cellulose, electrochemical characterization, lithium iron phosphate, lithium polymer battery

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10 -3 S cm -1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases) along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO 4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

References

[1]  Scrosati, B. Battery technology-challenge of portable power. Nature 1995, 373, 557–558.
[2]  Iwahori, T.; Mitsuishi, I.; Shiraga, S.; Nakajima, N.; Momose, H.; Ozaki, Y.; Taniguchi, S.; Awata, H.; Ono, T.; Takeuchi, K. Development of lithium ion and lithium polymer batteries for electric vehicle and home-use load levelling system application. Electrochimica Acta 2000, 45, 1509–1512.
[3]  Scrosati, B. Power sources for portable electronics and hybrid cars: Lithium batteries and fuel cells. Chem. Rec. 2005, 5, 286–297.
[4]  Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.
[5]  Arico, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 2005, 4, 366–377.
[6]  Scrosati, B. Recent advances in lithium ion battery materials. Electrochimica Acta 2000, 45, 2461–2466.
[7]  Cairns, E.J.; Albertus, P. Batteries for electric and hybrid-electric vehicles. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 299–320, doi:10.1146/annurev-chembioeng-073009-100942.
[8]  Terada, N.; Yanagi, T.; Arai, S.; Yoshikawa, M.; Ohta, K.; Nakajima, N.; Yanai, A.; Arai, N. Development of lithium batteries for energy storage and EV applications. J. Power Sources 2001, 100, 80–92, doi:10.1016/S0378-7753(01)00885-0.
[9]  Ratnakumar, B.V.; Smart, M.C.; Huang, C.K.; Perrone, D.; Surampudi, S.; Greenbaum, S.G. Lithium ion batteries for Mars exploration missions. Electrochimica Acta 2000, 45, 1513–1517, doi:10.1016/S0013-4686(99)00367-9.
[10]  Croce, F.; Sacchetti, S.; Scrosati, B. Advanced lithium batteries based on high-performance composite polymer electrolytes. J. Power Sources 2006, 162, 685–689.
[11]  Tominaga, Y.; Asai, S.; Sumita, M.; Panero, S.; Scrosati, B. A novel composite polymer electrolyte: Effect of mesoporous SiO2 on ionic conduction in poly(ethylene-oxide)-LiCF3SO3 complex. J. Power Sources 2005, 146, 402–406.
[12]  Wachtler, M.; Ostrovskii, D.; Jacobsson, P.; Scrosati, B. A study on PVdF-based SiO2-containing composite gel-type polymer electrolytes for lithium batteries. Electrochimica Acta 2004, 50, 357–361.
[13]  Ahmad, S.; Bohidar, H.B.; Ahmad, S.; Agnihotry, S.A. Role of fumed silica on ion conduction and rheology in nanocomposite polymeric electrolytes. Polymer 2006, 47, 3583–3590, doi:10.1016/j.polymer.2006.03.059.
[14]  Bruce, P.G. Energy materials. Solid State Sci. 2005, 7, 1456–1463.
[15]  Croce, F.; Persi, L.; Scrosati, B.; Serraino-Fiory, F.; Plichta, E.; Hendrickson, M.A. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochimica Acta 2001, 46, 2457–2461.
[16]  Capiglia, C.; Mustarelli, P.; Quartarone, E.; Tomasi, C.; Magistris, A. Effects on nanoscale SiO2 of the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ion. 1999, 118, 73–79.
[17]  Appetecchi, G.B.; Croce, F.; de Paolis, A.; Scrosati, B. A poly(vinylidene fluoride)-based gel electrolyte membrane for lithium batteries. J. Electroanal. Chem. 1999, 463, 248–252.
[18]  Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A.; Fagnoni, M.; Albini, A.; Gerbaldi, C.; Spinella, A. Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-Nmethylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. J. Power Sources 2010, 195, 559–566.
[19]  Decker, C. Photoinitiated crosslinking polymerisation. Prog. Polym. Sci. 1996, 21, 593–650.
[20]  Nair, J.; Gerbaldi, C.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.; Reale, P.; Gentili, V. UV-cured methacrylic membranes as novel gel-polymer electrolyte for Li-ion batteries. J. Power Sources 2008, 178, 751–757.
[21]  Gerbaldi, C.; Nair, J.R.; Ahmad, S.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N. UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries. J. Power Sources 2010, 195, 1706–1713.
[22]  Gerbaldi, C. All-solid-state lithium-based polymer cells for high-temperature applications. Ionics 2010, 16, 777–786.
[23]  Song, M.; Cho, J.; Cho, B.W.; Rhee, H. Characterization of UV-cured gel polymer electrolyte for rechargeable lithium batteries. J. Power Sources 2002, 110, 209–215, doi:10.1016/S0378-7753(02)00258-6.
[24]  Gerbaldi, C.; Nair, J.R.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N. Highly ionic conducting methacrylic-based gel-polymer electrolytes by UV-curing technique. J. Appl. Electrochem. 2009, 39, 2199–2207.
[25]  Gerbaldi, C.; Nair, J.R.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N. UV-curable siloxane-acrylate gel-copolymer electrolytes for lithium-based battery applications. Electrochimica Acta 2010, 55, 1460–1467.
[26]  Sirò, I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 2010, 17, 459–494, doi:10.1007/s10570-010-9405-y.
[27]  Meligrana, G.; Gerbaldi, C.; Tuel, A.; Bodoardo, S.; Penazzi, N. Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. J. Power Sources 2006, 160, 516–522.
[28]  Lima, D.U.; Oliveira, R.C.; Buckeridge, M.S. Seed storage hemicelluloses as wet-end additives in paper making. Carbohydr. Polym. 2003, 52, 367–373.
[29]  Nair, J.R.; Chiappone, A.; Gerbaldi, C.; Ijeri, V.S.; Zeno, E.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N. Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties. Electrochimica Acta 2011, 57, 104–111, doi:10.1016/j.electacta.2011.03.124.
[30]  Stachowiak, T.B.; Svec, F.; Fréchet, J.M.J. Patternable protein resistant surfaces for multifunctional microfluidic devices via surface hydrophilization of porous polymer monoliths using photografting. Chem. Mater. 2006, 18, 5950–5957.
[31]  Siqueira, G.; Bras, J.; Dufresne, A. Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 2008, 10, 425–432.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133