全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multispectral Remote Sensing Image Classification Model Based on Probabilistic Diffusion
基于概率扩散的多光谱遥感图像分类模型

Keywords: anisotropic diffusion,probabilistic diffusion,muhispectral remote sensing image classification,maximum a posteriori probability,diffusion coefficient
各向异性扩散
,概率扩散,多光谱遥感图像分类,最大后验概率估计,扩散系数

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper,we propose an automatic multispectral remote sensing image classification technique based on improved probabilistic diffusion.Firstly,the optimal number of clusters in multispectral images is determined by comparing the validity functions of fuzzy c-means classifier(FCM).The posterior probability maps for each class are then smoothed by an improved version of multispectral anisotropic diffusion based on morphology.Finally,each pixel is classified independently using the maximum a posterior probability(MAP) estimate based on probabilistic membership maps.Because of the elegant property of anisotropic diffusion,edge-preserving smoothing,probabilistic diffusion,not only restrains effectively speckles in homogeneous regions,but also preserves preferably the significant physiognomy and edge features.Experimental results are given to show that the proposed method avoids the influence of "class noise" and its overall accuracy and Kappa coefficient have superiority capability over the traditional maximum a posterior probability estimate classification method without probabilistic diffusion.Thus it is an ideal remote sensing classification method.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133