The present study was designed to evaluate the effect of quercetin on myocardial oxidative stress and immunity function impairment induced by isoproterenol in rats. To induce myocardial ischemia, Wistar rats were subcutaneously injected with isoproterenol (70 mg/kg). Blood immunity index, cardiac marker enzymes and antioxidative parameters in hearts were measured. It was found that the levels of blood AST, creatine kinase, NO, NOS, IL-10, IL-1, IL-8 and lactate dehydrogenase in isoproterenol-treated rats were significantly increased. The rats administrated with isoproterenol showed the declines in myocardial antioxidant enzymes activities. Administration of quercetin significantly ameliorated myocardial oxidative injury and immunity function impairment induced by isoproterenol. The results indicated that quercetin possesses activity against isoproterenol-induced myocardial oxidative injury and immunity function impairment, and that the mechanism of pharmacological action was related at least in part to the antioxidant activity of quercetin.
References
[1]
Maxwell, S.R.J.; Lip, G.Y.H. Reperfusion injury: A review of the pathophysiology, clinical manifestations and therapeutic options. Int. J. Cardiol. 1997, 58, 95–117.
[2]
Braunwald, E.K. Myocardial reperfusion: A double-edged sword? J. Clin. Invest. 1985, 76, 1713–1719, doi:10.1172/JCI112160.
[3]
McCord, J.M. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 1985, 312, 159–163.
[4]
Hearse, D.J.; Tosaki, A. Reperfusion-induced arrhythmias and free radicals: Studies in the rat heart with DMPO. J. Cardiovasc. Pharmacol. 1987, 9, 641–650.
[5]
Toyokuni, S.; Sagripanti, J.L. Induction of oxidative single- and double-strand breaks in DNA by ferric citrate. Free Radic. Biol. Med. 1993, 15, 117–123.
[6]
Hammond, B.; Hess, M.L. The oxygen free radical system: Potential mediator of myocardial injury. J. Am. Coll. Cardiol. 1985, 6, 215–220.
[7]
Attarian, D.E.; Jones, R.N.; Currie, W.D.; Hill, R.C.; Sink, J.D.; Olson, C.O.; Chitwood, W.R.; Wechsler, A.S. Characteristics of chronic left ventricular hypertrophy induced by subcoronary valvular aortic stenosis. II. Response to ischemia. J. Thorac. Cardiovasc. Surg. 1981, 81, 389–395.
[8]
Sink, J.D.; Pellom, G.L.; Currie, W.D.; Hill, R.C.; Olson, C.O.; Jones, R.N.; Wechsler, A.S. Response of hypertrophied myocardium to ischemia. Correlation with biochemical and physiological parameters. J. Thorac. Cardiovasc. Surg. 1981, 81, 865–872.
[9]
Boots, A.W.; Haenen, G.R.M.M.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008, 585, 325–337.
[10]
Moskaug, J.; Carlsen, H.; Myhrstad, M.; Blomhoff, R. Molecular imaging of the biological effects of quercetin and quercetin-rich foods. Mech. Ageing Dev. 2004, 125, 315–324.
[11]
Sestili, P.; Guidareli, A.; Dacha, M.; Cantoni, M. Quercetin prevents DNA single strand breakage and cytotoxicity caused by tert-butylhydroperoxide free radical scavenging versus iron chelating mechanism. Free Radic. Biol. Med. 1998, 25, 196–200.
[12]
Rao, M.K.; Ghosh, B. Quercetin inhibits LPS-induced nitric oxide and tumor necrosis factor-a production in murine macrophages. Int. J. Immunopharmacol. 1999, 21, 435–443.
[13]
Yamamoto, N.; Moon, J.H.; Tsushida, T.; Nagao, A.; Terao, J. Inhibitory effects of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation in human low-density lipoprotein. Arch. Biochem. Biophys. 1999, 372, 347–354.
[14]
Suematsu, N.; Hosoda, M.; Fujimori, K. Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells. Neurosci. Lett. 2011, 504, 223–227.
[15]
Boots, A.W.; Haenen, G.R.M.M.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008, 585, 325–337.
[16]
Kleemann, R.; Verschuren, L.; Morrison, M.; Zadelaar, S.; van Erk, M.J.; Wielinga, P.Y.; Kooistra, T. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 2011, 218, 44–52.
[17]
Rogerio, A.P.; Dora, C.L.; Andrade, E.L.; Chaves, J.S.; Silva, L.F.C.; Lemos-Senna, E.; Calixto, J.B. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacol. Res. 2010, 61, 288–297.
[18]
Su, J.F.; Guo, C.J.; Wei, J.Y.; Yang, J.J.; Jiang, Y.G.; Li, Y.F. Study on the absorption of quercetin and rutin at different segments of intestine. J. Hyg. Res. 2002, 31, 55–57.
[19]
Su, J.F.; Guo, C.J.; Wei, J.Y.; Yang, J.J. Antioxidant capacity of quercetin in vitro and in vivo. Chin. J. Appl. Physiol. 2002, 18, 382–386.
[20]
Su, J.F.; Guo, C.J.; Wei, J.Y.; Yang, J.J.; Jiang, Y.G.; Li, Y.F. Protection against hepatic ischemia-reperfusion injury in rats by oral pretreatment with quercetin. Biomed. Environ. Sci. 2003, 16, 1–8.
[21]
Camargo, C.A.; da Silva, M.E.F.; da Silva, R.A.; Justo, G.Z.; Gomes-Marcondes, M.C.C.; Aoyama, H. Inhibition of tumor growth by quercetin with increase of survival and prevention of cachexia in Walker 256 tumor-bearing rats. Biochem. Biophys. Res. Commun. 2011, 406, 638–642.
[22]
Zhu, J.T.T.; Choi, R.C.Y.; Chu, G.K.Y.; Cheung, A.W.H.; Gao, Q.T.; Li, J.; Jiang, Z.Y.; Dong, T.T.X.; Tsim, K.W.K. Flavonoids possess neuroprotective effects on cultured pheochromocytoma pc12 cells: A comparison of different flavonoids in activating estrogenic effect and in preventing β-amyloid-induced cell death. J. Agric. Food Chem. 2007, 55, 2438–2445.
[23]
Cho, J.Y.; Kim, I.S.; Jang, Y.H.; Kim, A.R.; Lee, S.R. Protective effect of quercetin, a natural flavonoid against neuronal damage after transient global cerebral ischemia. Neurosci. Lett. 2006, 404, 330–335.
[24]
Karthick, M.; Stanely Mainzen Prince, P. Preventive effect of rutin, a bioflavonoid, on lipid peroxides and antioxidants in ISO-induced myocardial infarction in rats. J. Pharm. Pharmacol. 2006, 58, 701–707.
[25]
Zhou, R.; Xu, Q.B.; Zheng, P.; Yan, L.; Zheng, J.; Dai, G.D. Protective effect of fluvastatin on myocardial infarction in rat. Eur. J. Pharmacol. 2000, 586, 244–250.
Anaga, A.O.; Onehi, E.V. Antinociceptive and anti-inflammatory effects of the methanol seed extract of Carica papaya in mice and rats. Afr. J. Pharm. Pharmacol. 2010, 4, 140–144.
[28]
Ma, H.B.; Diao, Y.P.; Zhao, D.Y.; Li, K.; Kang, T.G. A new alternative to treat swine influenza A virus infection: Extracts from Terminalia chebula Retz. Afr. J. Microbiol. Res. 2010, 4, 497–499.
[29]
Woodward, J.J.; Nejatyjahromy, Y.; Britt, R.D.; Marletta, M.A. Pterin-centered radical as a mechanistic probe of the second step of nitric oxide synthase. J. Am. Chem. Soc. 2000, 132, 5105–5113.
[30]
Martin, N.I.; Beeson, W.T.; Woodward, J.J.; Marletta, M.A. NG-Aminoguanidines from primary amines and the preparation of nitric oxide synthase inhibitors. J. Med. Chem. 2005, 51, 924–931.
[31]
Frangogiannis, N.G.; Mendoza, L.H.; Lindsey, M.L.; Ballantyne, C.M.; Michael, L.H.; Smith, C.W.; Entman, M.L. IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J. Immunol. 2000, 165, 2798–2808.
[32]
Eefting, D.; Schepers, A.; de Vries, M.R.; Pires, N.M.; Grimbergen, J.M.; Lagerweij, T.; Nagelkerken, L.M.; Monraats, P.S.; Jukema, J.W.; van Bockel, J.H.; et al. The effect of interleukin-10 knock-out and overexpression on neointima formation in hypercholesterolemic APOE_3-Leiden mice. Atherosclerosis 2007, 193, 335–342, doi:10.1016/j.atherosclerosis.2006.09.032.
[33]
Satterthwaite, G.; Francis, S.E.; Suvarna, K.; Blakemore, S.; Ward, C.; Wallace, D.; Braddock, M.; Crossman, D. Differential gene expression in coronary arteries from patients presenting with ischemic heart disease: Further evidence for the inflammatory basis of atherosclerosis. Am. Heart J. 2005, 150, 488–499.
[34]
de Waal Malefyt, R.; Abrams, J.; Bennett, B.; Figdor, C.G.; de Vries, J.E. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: An autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 1991, 174, 1209–1220.
[35]
Honarmand, H.; Mirzajani, E.; Rahbar-Taromsari, M.; Saadat, F.; Mirblock, F.; Mashayekhi, F. The relationship and diagnostic value of C-reactive protein (CRP) and C-reactive protein (hsCRP) for myocardial infarction. Afr. J. Microbiol. Res. 2011, 5, 2891–2894.
[36]
Akanbi, O.M.; Badaki, J.A.; Adeniran, O.Y.; Olotu, O.O. Effect of blood group and demographic characteristics on malaria infection, oxidative stress and haemoglobin levels in south western Nigeria. Afr. J. Microbio.l Res. 2010, 4, 877–880.
[37]
Reshmi, S.K.; Sathya, E.; Suganya Devi, P. Isolation of piperdine from Piper nigrum and its antiproliferative activity. Afr. J. Pharm. Pharmacol. 2010, 4, 562–573.
[38]
Moro, C.; Jouan, M.G.; Rakotovao, A.; Toufektsian, M.C.; Ormezzano, O.; Nagy, N.; Tosaki, A.; de Leiris, J.; Boucher, F. Delayed expression of cytokines after reperfused myocardial infarction: Possible trigger for cardiac dysfunction and ventricular remodeling. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H3014–H3019, doi:10.1152/ajpheart.00797.2007.
[39]
Das, D.K.; Engelman, R.M.; Kimura, Y. Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischaemia. Cardiovasc. Res. 1993, 27, 578–584.
[40]
Akhtar, M.S.; Naeem, F.; Muhammad, F.; Bhatty, N. Effect of Butea monosperma (Lamk.) Taub. (Palas papra) fruit on blood glucose and lipid profiles of normal and diabetic human volunteers. Afr. J. Pharm. Pharmacol. 2010, 4, 539–544.
[41]
Oyedemi, S.O.; Bradley, G.; Afolayan, A.J. In-vitro and -vivo antioxidant activities of aqueous extract of Strychnos henningsii Gilg. Afr. J. Pharm. Pharmacol 2010, 4, 070–078.
[42]
Aydin, H.; Yildiz, G.; Engin, A.; Yilmaz, A.; ?elik, K.; Bakir, S. Malondialdehyde, vitamin E, and anti-oxidant enzyme activity levels in patients with crimean-congo hemorrhagic fever. Afr. J. Microbiol. Res. 2010, 4, 2402–2409.
[43]
Bhattacharya, S.K.; Satyan, K.S.; Ghosal, S. Antioxidant activity of Bacopa monniera in rat frontal cortex, straitum and hippocampus. Phytother. Res. 2000, 14, 174–179.
[44]
Brodde, O.-E. Beta 1- and beta 2-adrenoceptors in the human heart: Properties, function, and alteration in chronic heart failure. Pharmacol. Rev. 1991, 43, 203–242.
[45]
Yeager, J.C.; Iams, S.G. The hemodynamics of isoproterenol-induced cardiac failure in rats. Circ. Shock 1981, 8, 151–163.
[46]
Bloom, S.; Davis, D.L. Calcium as a mediator of isoproterenol-induced myocardial necrosis. Am. J. Pathol. 1972, 69, 459–470.
[47]
Singal, P.K.; Beamish, R.E.; Dhalla, N.S. Potential oxidative pathways of catecholamines in the formation of lipid peroxides and genesis of heart disease. Adv. Exp. Med. Biol. 1983, 161, 391–440.
[48]
Grimm, D.; Elsner, D.; Schunkert, H.; Pfeifer, M.; Griese, D.; Bruckschlegel, G.; Muders, F.; Riegger, G.A.; Kromer, E.P. Development of heart failure following isoproterenol administration in the rat: Role of the rennin-angiotensin system. Cardiovasc. Res. 1998, 37, 91–100.
[49]
Pan, L.-Q.; Luan, Z.-H.; Jin, C.-X. Effects of Na+/K+ and Mg2+/Ca2+ ratios in saline groundwaters on Na+-K+-ATPase activity, survival and growth of Marsupenaeus japonicus postlarvae. Aquaculture 2006, 261, 1396–1402.
[50]
Benson, E.E.; Roubelakis-angelakis, K.A. Oxidative stress in recalcitrant tissue cultures of grapevine. Free Radic. Biol. Med. 1994, 16, 355–362.
[51]
Kakkar, P.; Dos, B.; Viswanathan, P.N. A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys. 1984, 21, 130–132.
[52]
Jollow, D.J.; Mitchell, J.R.; Zampaglione, N.; Gillete, J.R. Bromobenzene induced liver necrosis: Protective role of glutathione and evidence for 3,4-bromobenzeneoxide as the hepatotoxic intermediate. Pharmacology 1974, 11, 151–169.
[53]
Yang, Q.; Wang, S.W.; Xie, Y.H.; Wang, J.B.; Li, H.; Zhou, X.X.; Liu, W.B. Effect of Salvianolic acid b and paeonol on blood lipid metabolism and hemorrheology in myocardial ischemia rabbits induced by pituitruin. Int. J. Mol. Sci. 2010, 11, 3696–3704.
[54]
Sinha, A.K. Colorimetric assay of catalase. Anal. Biochem. 1972, 47, 389–395.
[55]
D’Amico, M.; di Filippo, C.; La, M.; Solito, E.; McLean, P.G.; Flower, R.J.; Oliani, S.M.; Perretti, M. Lipocortin 1 reduces myocardial ischemia-reperfusion injury by affecting local leukocyte recruitment. FASEB J. 2000, 14, 1867–1869.
[56]
Zhang, S.; He, B.; Ge, J.B.; Li, H.B.; Luo, X.Y.; Zhang, H.; Li, Y.H.; Zhai, C.L.; Liu, P.G.; Liu, X.; et al. Extraction, chemical analysis of Angelica sinensis polysaccharides and antioxidant activity of the polysaccharides in ischemia-reperfusion rats. Int. J. Biol. Macromol. 2010, 47, 546–550, doi:10.1016/j.ijbiomac.2010.07.012.