全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Molecules  2012 

Essential Oils in Combination and Their Antimicrobial Properties

DOI: 10.3390/molecules17043989

Keywords: essential oils, combinations, antimicrobial, synergism, antagonism, additive effects

Full-Text   Cite this paper   Add to My Lib

Abstract:

Essential oils (EOs) have been long recognized for their antibacterial, antifungal, antiviral, insecticidal and antioxidant properties. They are widely used in medicine and the food industry for these purposes. The increased interest in alternative natural substances is driving the research community to find new uses and applications of these substances. EOs and their components show promising activities against many food-borne pathogens and spoilage microorganisms when tested in vitro. In food systems, higher concentrations of EOs are needed to exert similar antibacterial effects as those obtained in in vitro assays. The use of combinations of EOs and their isolated components are thus new approaches to increase the efficacy of EOs in foods, taking advantage of their synergistic and additive effects. The purpose of this review is to provide an overview on the antimicrobial efficacy of these combinations. A survey of the methods used for the determination of the interactions and mechanisms involved in the antimicrobial activities of these combinations are also reported.

References

[1]  Schafer, H.; Wink, M. Medicinally important secondary metabolites in recombinant microorganisms or plants: Progress in alkaloid biosynthesis. Biotechnol. J. 2009, 4, 1684–1703, doi:10.1002/biot.200900229. 19946877
[2]  Rosenthal, G.A. The biochemical basis for the deleterious effects of L-canavanine. Phytochemistry 1991, 30, 1055–1058, doi:10.1016/S0031-9422(00)95170-7.
[3]  Wink, M. Functions of Plant Secondary Metabolites and Their Exploitation in Biotechnology; She?eld Academic Press: She?eld, UK, 1999; p. 362.
[4]  van de Braak, S.A.A.J.; Leijten, G.C.J.J. Essential Oils and Oleoresins: A Survey in the Netherlands and Other Major Markets in the European Union; CBI, Centre for the Promotion of Imports from Developing Countries: Rotterdam, The Netherlands, 1999; p. 116.
[5]  Balz, R. The Healing Power of Essential Oils, 1st ed.; Lotus Press: Twin Lakes, WI, USA, 1999; pp. 27–80.
[6]  Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475, doi:10.1016/j.fct.2007.09.106. 17996351
[7]  Guenther, E. The Essential Oils; van Nostrand Co., Inc.: New York, NY, USA, 1950.
[8]  Boyle, W. Spices and essential oils as preservatives. Am. Perfum. Essent. Oil Rev. 1955, 66, 25–28.
[9]  Guenther, E. The Essential Oils; D. van Nostrand: New York, NY, USA, 1948.
[10]  Pichersky, E.; Noel, J.P.; Dudareva, N. Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science 2006, 311, 808–811, doi:10.1126/science.1118510. 16469917
[11]  Burt, S. Essential oils: Their antimicrobial properties and potential applications in foods: A review. Int. J. Food Microbiol. 2004, 94, 223–253, doi:10.1016/j.ijfoodmicro.2004.03.022. 15246235
[12]  Koroch, A.; Juliani, H.R.; Zygadlo, J.A. Bioactivity of Essential Oils and Their Components. In Flavours and Fragrances Chemistry, Bioprocessing and Sustainability; Berger, R.G., Ed.; Springer Verlag: Berlin, Germany, 2007; pp. 87–115.
[13]  Delaquis, P.J.; Stanich, K.; Girard, B.; Mazza, G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 2002, 74, 101–109, doi:10.1016/S0168-1605(01)00734-6.
[14]  Davidson, P.M.; Parish, M.E. Methods for testing the efficacy of food antimicrobials. Food Technol. 1989, 43, 148–155.
[15]  Gill, A.O.; Delaquis, P.; Russo, P.; Holley, R.A. Evaluation of antilisterial action of cilantro oil on vacuum packed ham. Int. J. Food Microbiol. 2002, 3, 83–92.
[16]  Mourey, A.; Canillac, N. Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control 2002, 13, 289–292, doi:10.1016/S0956-7135(02)00026-9.
[17]  Harris, R. Synergism in the essential oil world. Int. J. Aromather. 2003, 12, 179–186.
[18]  Karatzas, A.K.; Kets, E.P.W.; Smid, E.J.; Bennik, M.H.J. The combined action of carvacrol and high hydrostatic pressure on Listeria monocytogenes. J. Appl. Microbiol. 2001, 90, 463–469, doi:10.1046/j.1365-2672.2001.01266.x.
[19]  Santiesteban-Lopez, A.; Palou, E.; López-Malo, A. Susceptibility of food-borne bacteria to binary combinations of antimicrobials at selected a(w) and pH. J. Appl. Microbiol. 2007, 102, 486–497. 17241355
[20]  Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol. 2008, 124, 91–97, doi:10.1016/j.ijfoodmicro.2008.02.028. 18378032
[21]  Bajpai, V.K.; Baek, K.-H.; Baek, S.C. Control of Salmonella in foods by using essential oils: A review. Food Res. Int. 2012, 45, 722–734, doi:10.1016/j.foodres.2011.04.052.
[22]  Kim, J.; Marshall, M.R.; Wei, C.I. Antibacterial activity of some essential oil components against ?ve foodborne pathogens. J. Agric. Food Chem. 1995, 43, 2839–2845, doi:10.1021/jf00059a013.
[23]  Lambert, R.J.W.; Skandamis, P.N.; Coote, P.; Nychas, G.J.E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462, doi:10.1046/j.1365-2672.2001.01428.x. 11556910
[24]  Juliani, H.R.; Biurrun, F.; Koroch, A.R.; Oliva, M.M.; Demo, M.S.; Trippi, V.S.; Zygadlo, J.A. Chemical constituents and antimicrobial activity of the essential oil of Lantana xenica mold. Planta Med. 2002, 68, 756–762.
[25]  Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990, doi:10.1046/j.1365-2672.1999.00780.x. 10438227
[26]  Cox, S.D.; Mann, C.M.; Markham, J.L. Interactions between components of the essential oil of Melaleuca alternifolia. J. Appl. Microbiol. 2001, 91, 492–497, doi:10.1046/j.1365-2672.2001.01406.x.
[27]  Cosentino, S.; Tuberoso, C.I.G.; Pisano, B.; Satta, M.; Mascia, V.; Arzedi, E.; Palmas, F. In vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. J. Appl. Microbiol. 1999, 29, 130–135, doi:10.1046/j.1472-765X.1999.00605.x.
[28]  Dormans, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316, doi:10.1046/j.1365-2672.2000.00969.x. 10736000
[29]  Ben Arfa, A.; Combes, S.; Preziosi-Belloy, L.; Gontard, N.; Chalier, P. Antimicrobial activity of carvacrol related to its chemical structure. J. Appl. Microbiol. 2006, 43, 149–154, doi:10.1111/j.1472-765X.2006.01938.x.
[30]  Bassolé, I.H.N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 2010, 15, 7825–7839, doi:10.3390/molecules15117825.
[31]  Inouye, S.; Yamaguchi, H.; Takizawa, T. Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. J. Inf. Chemother. 2001, 7, 251–254, doi:10.1007/s101560170022.
[32]  Barros, J.C.; Concei??o, M.L.; Gomes Neto, N.J.; Costa, A.C.V.; Siqueira Júnior, J.P.; Basílio Júnior, I.D. Interference of Origanum vulgare L. essential oil on the growth and some physiological characteristics of Staphylococcus aureus strains isolated from foods. LWT Food Sci. Technol. 2009, 42, 1139–1143, doi:10.1016/j.lwt.2009.01.010.
[33]  Nostro, A.; Cannatelli, M.A.; Musolino, A.D.; Procopio, F.; Alonzo, V. Helichrysum italicum extract interferes with the production of enterotoxins by Staphylococcus aureus. J. Appl. Microbiol. 2002, 35, 181–184, doi:10.1046/j.1472-765X.2002.01166.x.
[34]  Carson, C.F.; Riley, T.V. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J. Appl. Bacteriol. 1995, 78, 264–269, doi:10.1111/j.1365-2672.1995.tb05025.x.
[35]  Griffin, G.S.; Wyllie, G.S.; Markham, L.J.; Leach, D.N. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr. J. 1999, 14, 322–332, doi:10.1002/(SICI)1099-1026(199909/10)14:5<322::AID-FFJ837>3.0.CO;2-4.
[36]  Tajkarimi, M.M.; Ibrahima, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control 2010, 21, 1199–1218, doi:10.1016/j.foodcont.2010.02.003.
[37]  Sachetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 2005, 91, 621–632, doi:10.1016/j.foodchem.2004.06.031.
[38]  Ait-Ouazzou, A.; Cherrat, L.; Espina, L.; Lorán, S.; Rota, C.; Pagán, R. The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes of food preservation. Innov. Food Sci. Emerg. 2011, 12, 320–329, doi:10.1016/j.ifset.2011.04.004.
[39]  Oussalah, M.; Caillet, S.; Saucier, L.; Lacroix, M. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: Escherichia coli O157:H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 2007, 18, 414–420, doi:10.1016/j.foodcont.2005.11.009.
[40]  Sokovi?, M.D.; Vukojevi?, J.; Marin, P.D.; Brki?, D.D.; Vajs, V.; van Griensven, L.J.L.D. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 2009, 14, 238–249, doi:10.3390/molecules14010238.
[41]  Hazzit, M.; Baaliouamer, A.; Verissimo, A.R.; Falerio, M.L.; Miguel, M.G. Chemical composition and biological activities of Algerian thymus oils. Food Chem. 2009, 116, 714–721, doi:10.1016/j.foodchem.2009.03.018.
[42]  Fu, Y.J.; Zu, Y.G.; Chen, L.Y.; Shi, X.G.; Wang, Z.; Sun, S.; Efferth, T. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother. Res. 2007, 21, 989–994, doi:10.1002/ptr.2179. 17562569
[43]  Suresh, P.; Ingle, V.K.; Vijaya, L. Antibacterial activity of eugenol in comparison with other antibiotics. J. Food Sci. Technol. 1992, 29, 256–257.
[44]  Juliani, H.R.; Simon, J.E.; Ramboatiana, M.M.R.; Behra, O.; Garvey, A.; Raskin, I. Malagasy aromatic plants: Essentials, antioxidant and antimicrobial activities. Acta Hortic. 2004, 629, 77–81.
[45]  Prabuseenivasan, S.; Jayakumar, M.; Ignacimuthu, S. In vitro antibacterial activity of some plant essential oils. BMC Complement. Altern. Med. 2006, 6, 39, doi:10.1186/1472-6882-6-39.
[46]  Juliani, H.R.; Koroch, A.R.; Simon, J.E. Chemical Diversity of Essential Oils of Ocimum species and Their Associated Antioxidant and Antimicrobial Activity. In Essential Oils and Aromas: Green Extractions and Applications; Chemat, F., Varshney, V.K., Allaf, K., Eds.; Har Krishan Bhalla & Sons: Dehradun, India, 2009.
[47]  Southwell, I.A.; Hayes, A.J.; Markham, J.L.; Leach, D.N. The search for optimally bioactive Australian tea tree oil. Acta Hortic. 1993, 334, 265–275.
[48]  Lis-Balchin, M.; Deans, S.G. Bioactivity of selected plant essential oil against Listeria monocytogenes. J. Appl. Microbiol. 1997, 82, 759–762, doi:10.1046/j.1365-2672.1997.00153.x. 9202441
[49]  Demirci, B.; Kosar, M.; Demirci, F.; Dinc, M.; Baser, K.H.C. Antimicrobial and antioxidant activities of the essential oil of Chaerophyllum libanoticum Boiss. et Kotschy. Food Chem. 2007, 105, 1512–1517, doi:10.1016/j.foodchem.2007.05.036.
[50]  Tabanca, N.; Demirci, F.; Demirci, B.; Wedge, D.E.; Baser, K.H.C. Composition, enantiomeric distribution, and antimicrobial activity of Tanacetum argenteum subsp. flabellifolium essential oil. J. Pharm. Biomed. 2007, 45, 714–719, doi:10.1016/j.jpba.2007.08.006.
[51]  Chéraif, I.; Ben Jannet, H.; Hammami, M.; Khouja, M.L.; Mighri, Z. Chemical composition and antimicrobial activity of essential oils of Cupressus arizonica Greene. Biochem. Syst. Ecol. 2007, 35, 813–820, doi:10.1016/j.bse.2007.05.009.
[52]  Delgado, B.; Fernández, P.S.; Palop, A.; Periago, P.M. Effect of thymol and cymene on Bacillus cereus vegetative cells evaluated through the use of frequency distribution. Food Microbiol. 2004, 21, 327–334, doi:10.1016/S0740-0020(03)00075-3.
[53]  Nychas, G.J.E. Natural Antimicrobials from Plants. In New Methods of Food Preservation; Gould, G.W., Ed.; Blackie Academic and Professional: London, UK, 1995; pp. 58–89.
[54]  Pei, R.S.; Zhou, F.; Ji, B.P.; Xu, J. Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved Method. J. Food Sci. 2009, 74, 379–383, doi:10.1111/j.1750-3841.2009.01287.x.
[55]  Gallucci, M.N.; Oliva, M.; Casero, C.; Dambolena, J.; Luna, A.; Zygadlo, J.; Demo, M. Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragr. J. 2009, 24, 348–354, doi:10.1002/ffj.1948.
[56]  Rivas, L.; McDonnell, M.J.; Burgess, C.M.; O’Brien, M.; Navarro-Villa, A.; Fanning, S. Inhibition of vercytotoxigenic Escherichia coli in model broth and rumen systems by carvacrol and thymol. Int. J. Food Microbiol. 2010, 139, 70–78, doi:10.1016/j.ijfoodmicro.2010.01.029.
[57]  Zhou, F.; Ji, B.; Zhang, H.; Jiang, H.; Yang, Z.; Li, J.; Li, J.; Yan, W. The antibacterial effect of cinnamaldehyde, thymol, carvacrol and their combinations against the food-borne pathogen Salmonella typhimurium. J. Food Saf. 2007, 27, 124–133, doi:10.1111/j.1745-4565.2007.00064.x.
[58]  Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.J. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Prot. 2000, 63, 620–624. 10826719
[59]  Moleyar, V.; Narasimham, P. Antibacterial activity of essential oil components. Int. J. Food Microbiol. 1992, 16, 337–342, doi:10.1016/0168-1605(92)90035-2. 1457292
[60]  Mulyaningsih, S.; Sporer, F.; Zimmermann, S.; Reichling, J.; Wink, M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine 2010, 17, 1061–1066, doi:10.1016/j.phymed.2010.06.018.
[61]  van Vuuren, S.F.; Viljoen, A.M. Antimicrobial activity of limonene enantiomers and 1,8-cineole alone and in combination. Flavour Fragr. J. 2007, 22, 540–544, doi:10.1002/ffj.1843.
[62]  Tserennadmid, R.; Takó, M.; Galgóczy, L.; Papp, T.; Pesti, M.; Vágv?lgyi, C.; Almássy, K.; Krisch, J. Anti yeast activities of some essential oils in growth medium, fruit juices and milk. Int. J. Food Microbiol. 2011, 144, 480–486, doi:10.1016/j.ijfoodmicro.2010.11.004. 21131081
[63]  de Azeredo, G.A.; Stamford, T.L.M.; Nunes, P.C.; Neto, N.J.G.; de Oliveira, M.E.G.; de Souza, E.L. Combined application of essential oils from Origanum vulgare L. and Rosmarinus officinalis L. to inhibit bacteria and autochthonous microflora associated with minimally processed vegetables. Food Res. Int. 2011, 44, 1541–1548, doi:10.1016/j.foodres.2011.04.012.
[64]  Go?i, P.; López, P.; Sánchez, C.; Gómez-Lus, R.; Becerril, R.; Nerín, C. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chem. 2009, 116, 982–989, doi:10.1016/j.foodchem.2009.03.058.
[65]  Gutierrez, J.; Barry-Ryan, C.; Bourke, P. Antimicrobial activity of plant essential oils using food model media: Ef?cacy, synergistic potential and interactions with food components. Food Microbiol. 2009, 26, 142–150, doi:10.1016/j.fm.2008.10.008. 19171255
[66]  Bassolé, I.H.N.; Lamien-Meda, A.; Bayala, B.; Obame, L.C.; Ilboudo, A.J.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Chemical composition and antimicrobial activity of Cymbopogon citratus and Cymbopogon giganteus essential oils alone and in combination. Phytomedicine 2011, 18, 1070–1074, doi:10.1016/j.phymed.2011.05.009.
[67]  Mackay, M.L.; Milne, I.M.; Gould, I.M. Comparison of methods for assessing synergic antibiotic interactions. Int. J. Antimicrob. Agents 2000, 15, 125–129, doi:10.1016/S0924-8579(00)00149-7. 10854808
[68]  White, R.L.; Burgess, D.S.; Manduru, M.; Bosso, J.A. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrob. Agents Chemother. 1996, 40, 1914–1918. 8843303
[69]  Tallarida, R.J. Drug synergism: Its detection and applications. J. Pharmacol. Exp. Ther. 2001, 298, 865–872. 11504778
[70]  Shin, S.; Kang, C.A. Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. J. Appl. Microbiol. 2003, 36, 111–115, doi:10.1046/j.1472-765X.2003.01271.x.
[71]  Filoche, S.K.; Soma, K.; Sissons, C.H. Antimicrobial effects of essential oils in combination with chlorhexidine digluconate. Oral Microbiol. Immunol. 2005, 20, 221–225, doi:10.1111/j.1399-302X.2005.00216.x. 15943766
[72]  Zhou, F.; Ji, B.; Zhang, H.; Jiang, H.; Yang, Z.; Li, J.; Li, J.; Yan, W. Synergistic effect of thymol and carvacrol combined with chelators and organic acids against Salmonella typhimurium. J. Food Prot. 2007, 70, 1704–1709. 17685346
[73]  Hall, M.J.; Middleton, R.F.; Westmacott, D. The fractional inhibitory concentration (FIC) index as a measure of synergy. J. Antimicrob. Chemother. 1983, 11, 427–433, doi:10.1093/jac/11.5.427. 6874629
[74]  Krogstad, D.J.; Moellering, R.C., Jr. Antimicrobial Combinations. In Antibiotics in Laboratory Medicine, 2nd; Lorian, V., Ed.; Williams & Wilkins: Baltimore, MD, USA, 1986; pp. 537–595.
[75]  Schelz, A.; Molnar, J.; Hohmann, J. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 2006, 77, 279–285, doi:10.1016/j.fitote.2006.03.013. 16690225
[76]  Zore, G.B.; Thakre, A.D.; Jadhav, S.; Karuppayil, S.M. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 2011, 18, 1181–1190, doi:10.1016/j.phymed.2011.03.008.
[77]  Rosato, A.; Vitali, C.; de Laurentis, N.; Armenise, D.; Nulillo, M.A. Antibacterial effect of some essential oils administered alone or in combination with nor?oxacin. Phytomedicine 2007, 14, 727–732, doi:10.1016/j.phymed.2007.01.005. 17303397
[78]  Romano, C.S.; Abadi, K.; Repetto, V.; Vojnov, A.A.; Moreno, S. Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives. Food Chem. 2009, 115, 456–461, doi:10.1016/j.foodchem.2008.12.029.
[79]  Tan, T.Q.; Mason, E.O.; Ou, C.N.; Kaplan, S.L. Use of intravenous rifampin in neonates with persistent staphylococcal bacteremia. Antimicrob. Agents Chemother. 1993, 37, 2401–2406, doi:10.1128/AAC.37.11.2401. 8285624
[80]  Singh, P.K.; Tack, B.F.; Mccray, P.B., Jr.; Welsh, M.J. Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 279, L799–L805. 11053013
[81]  Kamatou, G.P.P.; Viljoen, A.M.; van Vuuren, S.F.; van Zyl, R.L. In vitro evidence of antimicrobial synergy between Salvia chamelaeagnea and Leonotis leonurus. S. Afr. J. Bot. 2006, 72, 634–637, doi:10.1016/j.sajb.2006.03.011.
[82]  Fyfe, L.; Armstrong, F.; Stewart, J. Inhibition of Listeria monocytogenes and Salmonella enteriditis by combinations of plant oils and derivatives of benzoic acid: The development of synergistic antimicrobial combinations. Int. J. Antimicrob. Agents 1998, 9, 195–199, doi:10.1016/S0924-8579(97)00051-4.
[83]  Burt, S.A.; van der Zee, R.; Koets, A.P.; de Graaff, A.M.; van Knapen, F.; Gaastra, W.; Haagsman, H.P.; Veldhuizen, E.J. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7. Appl. Environ. Microbiol. 2007, 73, 4484–4490, doi:10.1128/AEM.00340-07. 17526792
[84]  Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial activity of three monoterpenes. Agents Chemother. 2005, 49, 2474–2478, doi:10.1128/AAC.49.6.2474-2478.2005.
[85]  Hayouni, E.; Bouix, M.; Abedrabba, M.; Leveau, J.Y.; Hamdi, M. Mechanism of action of Melaleuca armillaris (Sol. Ex Gaertu) Sm. essential oil on six LAB strains as assessed by multiparametric flow cytometry and automated microtiter-based assay. Food Chem. 2008, 111, 707–718, doi:10.1016/j.foodchem.2008.04.044.
[86]  Pandima Devi, K.; Arif Nisha, S.; Sakthivel, R.; Karutha Pandian, S. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115, doi:10.1016/j.jep.2010.04.025. 20435121
[87]  Misaghi, A.; Basti, A.A. Effects of Zataria multi?ora Boiss. essential oil and nisin on Bacillus cereus ATCC 11778. Food Control 2007, 18, 1043–1049, doi:10.1016/j.foodcont.2006.06.010.
[88]  Rajkovic, A.; Uyttendaele, M.; Courtens, T.; Debevere, J. Antimicrobial effect of nisin and carvacrol and competition between Bacillus cereus and Bacillus circulans in acuum-packed potato puree. Food Microbiol. 2005, 22, 189–197, doi:10.1016/j.fm.2004.06.002.
[89]  Yamazaki, K.; Yamamoto, T.; Kawai, Y.; Inoue, N. Enhancement of antilisterial activity of essential oil constituents by nisin and diglycerol fatty acid ester. Food Microbiol. 2004, 21, 283–289, doi:10.1016/j.fm.2003.08.009.
[90]  Shahverdi, A.R.; Ra?i, F.; Fazeli, M.R.; Jamalifar, H. Enhancement of antimicrobial activity of furazolidone and nitrofurantoin against clinical isolates of Enterobacteriaceae by piperitone. Int. J. Aromather. 2004, 14, 77–80, doi:10.1016/j.ijat.2004.04.007.
[91]  Grande, M.J.; Lopez, R.L.; Abriouel, H.; Valdivia, E.; Ben Omar, N.; Maqueda, M.; Martinez-Canamero, M.; Galvez, A. Treatment of vegetable sauces with enterocin AS-48 alone or in combination with phenolic compounds to inhibit proliferation of Staphylococcus aureus. J. Food Prot. 2007, 70, 405–411. 17340876
[92]  Yoon, J.I.; Bajpai, V.K.; Kang, S.C. Synergistic effect of nisin and cone essential oil of Metasequoia glyptostroboides Miki ex Hu against Listeria monocytogenes in milk samples. Food Chem. Toxicol. 2011, 49, 109–114, doi:10.1016/j.fct.2010.10.004.
[93]  Moosavy, M.H.; Basti, A.A.; Misaghi, A.; Salehi, T.Z.; Abbasifar, R.; Ebrahimzadeh Mousavi, H.A.; Alipour, M.; Razavi, N.E.; Gandomi, H.; Noori, N. Effect of Zataria multi?ora Boiss. essential oil and nisin on Salmonella typhimurium and Staphylococcus aureus in a food model system and on the bacterial cell membranes. Food Res. Int 2008, 41, 1050–1057, doi:10.1016/j.foodres.2008.07.018.
[94]  Pyun, M.-S.; Shin, S. Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketaconazole. Phytomedicine 2006, 13, 394–400, doi:10.1016/j.phymed.2005.03.011.
[95]  Shiota, S.; Shimizu, M.; Mizushima, M.; Ito, H.; Hatano, T.; Yoshida, T.; Tsuchiya, T. Restoration of effectiveness of β-lactams on methicillin resistant Staphylococcus aureus by tellimagrandin I from rose red. FEMS Microbiol. Lett. 2000, 185, 135–138. 10754237
[96]  Shiota, S.; Shimizu, M.; Sugiyama, J.; Morita, Y.; Mizushima, T.; Tsuchiya, T. Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of β-lactams againstmethicillin-resistant Staphylococcus aureus. Microbiol. Immunol. 2004, 48, 67–73. 14734860
[97]  Lee, S.H.; Kin, C.J. Selective combination effect of anethole to antifungal activities of miconazole and amphotericin B. Yakhak Hoeji 1999, 43, 228–232.
[98]  Giordani, R.; Regli, P.; Kaloustian, J.; Mikail, C.; Abou, L.; Portugal, H. Antifungal effect of various essential oils against Candidaalbicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother. Res. 2004, 18, 990–995, doi:10.1002/ptr.1594.
[99]  Rosato, A.; Vitali, C.; de Laurentis, N.; Armenise, D.; Nulillo, M.A. Antibacterial effect of some essential oils administered alone or in combination with norfloxacin. Phytomedicine 2007, 14, 727–732, doi:10.1016/j.phymed.2007.01.005. 17303397
[100]  Dimitrijevic, S.I.; Mihajlovski, K.R.; Antonovic, D.G.; Milanovic-Stevanovic, M.R.; Mijin, D.Z. A study of the synergistic antilisterial effects of a sub-lethal dose of lactic acid and essential oils from Thymus vulgaris L., Rosmarinus of?cinalis L. and Origanum vulgare L.. Food Chem. 2007, 104, 774–782, doi:10.1016/j.foodchem.2006.12.028.
[101]  Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the foodborne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568, doi:10.1128/AEM.68.4.1561-1568.2002.
[102]  Fei, L.; Hao, L.; Qipeng, Y.; Chunfang, L. In vitro antimicrobial effects and mechanism of action ofselected plant essential oil combinations against four food-related microorganisms. Food Res. Int. 2011, 44, 3057–3064, doi:10.1016/j.foodres.2011.07.030.
[103]  Mastromatteo, M.; Lucera, A.; Milena, S.; Corbo, M.R. Combined effects of thymol, carvacrol and temperature on the quality of non-conventional poultry patties. Meat Sci. 2009, 83, 246–254, doi:10.1016/j.meatsci.2009.05.007. 20416746

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133