全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Robust and Fast Non-Local Means Algorithm for Image Denoising

Keywords: image denoising,non-local means,Laplacian pyramid,summed square image,FFT
图象
,计算方法,处理方式,计算机技术

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the paper, we propose a robust and fast image denoising method. The approach integrates both Non-Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyramid. Exploiting the redundancy property of Laplacian pyramid, we then perform non-local means on every level image of Laplacian pyramid. Essentially, we use the similarity of image features in Laplacian pyramid to act as weight to denoise image. Since the features extracted in Laplacian pyramid are localized in spatial position and scale, they are much more able to describe image, and computing the similarity between them is more reasonable and more robust. Also, based on the efficient Summed Square Image (SSI) scheme and Fast Fourier Transform (FFT), we present an accelerating algorithm to break the bottleneck of non-local means algorithm — similarity computation of compare windows. After speedup, our algorithm is fifty times faster than original non-local means algorithm. Experiments demonstrated the effectiveness of our algorithm. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work is supported by the National Grand Fundamental Research 973 Program of China (Grant No. 2002CB312101), the National Natural Science Foundation of China (Grant Nos. 60403038 and 60703084) and the Natural Science Foundation of Jiangsu Province (Grant No. BK2007571).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133