全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Application of a non-linear dimension reduction algorithm on document clustering
非线性维数约减算法在文档聚类中的应用

Keywords: non-linear dimension reduction,linear dimension reduction,self-organizing isometric embedding,docunmet clustering
非线性维数约减
,线性维数约减,自组织等距嵌入,文档聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presented a non-linear dimension reduction algorithm-Self-organizing Isometric Embedding (SIE) to compress high-dimensional document data. The algorithm was then validated in document clustering by being compared with the typical linear dimension reduction algorithm-Latent Semantic Indexing (LSI). Experimental results show that while significantly lowering the complexity, the performance of SIE is better than that of LSI and the benchmark.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133