全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Marine Drugs  2012 

Sarcophine-Diol Inhibits Expression of COX-2, Inhibits Activity of cPLA2, Enhances Degradation of PLA2 and PLCγ1 and Inhibits Cell Membrane Permeability in Mouse Melanoma B16F10 Cells

DOI: 10.3390/md10102166

Keywords: melanoma, sarcophine, sarcophine-diol, skin cancer

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sarcophine-diol (SD) is a semi-synthetic derivative of sarcophine with a significant chemopreventive effect against non-melanoma skin cancer both in vitro and in vivo. Recently, we have studied the effect of SD on melanoma development using the mouse melanoma B 16F 10 cell line. In this study, our findings show that SD suppresses cell multiplication and diminishes membrane permeability for ethidium bromide (EB), a model marker used to measure cell permeability for Ca 2+ ions. SD also decreases protein levels of COX-2, and increases degradation of phospholipases PLA 2 and PLC γ1 and diminishes enzymatic activity of the Ca 2+-dependent cPLA 2. This lower membrane permeability for Ca 2+-ions, associated with SD, is most likely due to the diminished content of lysophosphosphatidylcholine (lysoPC) within cell membranes caused by the effect of SD on PLA 2. The decrease in diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP 3) due to inhibition of PLC γ1, leads to the downregulation of Ca 2+-dependent processes within the cell and also inhibits the formation of tumors. These findings support our previous data suggesting that SD may have significant potential in the treatment of melanoma.

References

[1]  Zhang, X.; Kundoor, V.; Khalifa, S.; Zeman, D.; Fahmy, H.; Dwivedi, C. Chemopreventive effects of sarcophine-diol on skin tumor development in CD-1 mice. Cancer Lett. 2007, 253, 53–59, doi:10.1016/j.canlet.2007.01.009.
[2]  Haefner, B. Chemoprevention of cancer. Cancer Res. 2003, 45, 1–8.
[3]  Fahmy, H.; Khalifa, S.; Konoshima, T.; Zjawiony, J.K. An improved synthesis of 7,8-epoxy-1,3,11-cembratriene-15R (a), 16-diol, a cembranoid of marine origin with a potent cancer chemopreventive activity. Mar. Drugs 2004, 2, 1–7.
[4]  Zhang, X.; Bommareddy, A.; Chen, W.; Hildreth, M.; Kaushik, R.; Zeman, D.; Khalifa, S.; Fahmy, H.; Dwivedi, C. Chemopreventive effects of sarcophine-diol on ultraviolet B-induced skin tumor development in SKH-1 hairless mice. Mar. Drugs 2009, 7, 153–165, doi:10.3390/md7020153.
[5]  Fahmy, H.; Zjawiony, J.K.; Konoshima, T.; Tokuda, H.; Khan, S.; Khalifa, S. Potent skin cancer chemopreventiing activity of some novel semi-synthesis cembranoids from marine sources. Mar. Drugs 2006, 4, 1–9, doi:10.3390/md401001.
[6]  Kundor, V.; Zhang, X.; Khalifa, S.; Fahmy, H.; Dwivedi, C. A possible mechanism of action of the chemopreventive effects of sarcotriol on skin tumor development in CD-1 mice. Mar. Drugs 2006, 4, 274–285.
[7]  Sawant, S.; Toussef, D.; Mayer, A.; Sylvester, P.; Wali, V.; Arnat, M.; Sayed, K.E. Anticancer and anti-inflamatory sulfur-containing semisynthetic derivatives of sarcophine. Chem. Pharm. Bull. 2006, 54, 1119–1123, doi:10.1248/cpb.54.1119.
[8]  Zhang, X.; Bommareddy, A.; Chen, W.; Khalifa, S.; Kaushik, R.S.; Fahmy, H.; Dwivedi, C. Sarcophine-diol, a chemopreventive agent of skin cancer, inhibits cell growth and induces apoptosis through extrinsic pathway in human epidermoid carcinoma A431 cells. Trans. Onc. 2009, 2, 21–30.
[9]  Skin Cancer Facts. Available online: http://www.skincancer.org (accessed on 10 May 2012).
[10]  Szymanski, P.T.; Kuppast, B.; Ahmed, S.A.; Khalifa, S.; Fahmy, H. Sarcophine-diol inhibits proliferation and stimulates apoptosis in mouse melanoma B16F10 cell line. Mar. Drugs 2012, 10, 1–19.
[11]  Adam-Klages, S.; Schwandner, R.; Luschen, S.; Ussat, S.; Kreder, D.; Kronke, M. Caspase-mediated inhibition of human cytosolic phospholipase A2 during apoptosis. J. Immunol. 1998, 161, 5687–5694.
[12]  Bae, S.S.; Perry, D.K.; Oh, Y.S.; Choi, J.H.; Galardi, S.H.; Ghayur, T.; Ryu, S.H.; Hannun, Y.A.; Suh, P.-G. Proteolytic cleavage of phospholipase C-γ1 during apoptosis in Molt-4 cells. FASEB J. 2000, 14, 1083–1092.
[13]  Scholey, J.M.; Taylor, K.A.; Kenrick-Jones, J. Regulation of non-muscle myosin assembly by calmodulin-dependent light chain kinase. Nature 1980, 287, 233–235, doi:10.1038/287233a0.
[14]  Adelstein, R.S. Calmodulin and the regulation of the actin-myosin interaction in smooth muscle and nonmuscle cells. Cell 1982, 30, 349–350, doi:10.1016/0092-8674(82)90232-X.
[15]  Daly, C.J.; Gordon, J.F.; McGrath, J.C. The use of fluorescent nuclear dyes for the study of blood vessel structure and function: Novel applications of existing techniques. J. Vasc. Res. 1992, 29, 41–56.
[16]  Murakami, M.Y.; Nakatani, G.I.; Atsumi, K.; Inoue, L.; Kudo, I. Regulatory functions of phospholipase A2. Crit. Rev. Immunol. 1997, 17, 225–283, doi:10.1615/CritRevImmunol.v17.i3-4.10.
[17]  Leslie, C.C. Properties and regulation of cytosolic phospholipase A2. J. Biol. Chem. 1997, 272, 16707–16712, doi:10.1074/jbc.272.26.16707.
[18]  Porter, N.A. Mechanisms for the autooxidation of polyunsaturated lipids. Acc. Chem. Res. 1986, 19, 262–268, doi:10.1021/ar00129a001.
[19]  Hecker, M.; Volker, U.; Fischer, C.; Messe, C.O. Identification of novel arachidonic acid metabolites formed by prostaglandin H synthase. Eur. J. Biochem. 1987, 169, 113–123, doi:10.1111/j.1432-1033.1987.tb13587.x.
[20]  Cao, Y.; Pearman, A.T.; Zimmerman, G.A.; McIntyre, T.M.; Prescott, S.M. Intracellular unestrified arachidonic acid signals apoptosis. Proc. Natl. Acad. Sci. USA 2000, 97, 11280–11285.
[21]  Figueiredo, A.; Caissie, A.L.; Callejo, S.A.; McLean, I.W.; Gold, P.; Burnier, M.N., Jr. Cyclooxygenase-2 expression in uveal melanoma: Novel classification of mixed-cell-type tumors. Can. J. Ophthalmol. 2003, 38, 352–356.
[22]  Marshall, J.-C.; Caissie, A.L.; Cruess, S.R.; Cools-Lartique, J.; Burnier, M.N., Jr. The effects of a cyclooxygenase-2 (Cox-2) expression and inhibition on human uveal melanoma cell proliferation and macrophage nitric oxide production. J. Carcinog. 2007, 6, 17–27, doi:10.1186/1477-3163-6-17.
[23]  Karin, M. Inflammation and cancer: The long reach of RAs. Nat. Med. 2005, 11, 20–21, doi:10.1038/nm0105-20.
[24]  Kokkotou, E.; Moss, A.C.; Torres, D.; Karaginnides, I.; Cheifez, A.; Liu, S.; O’Brien, M.; Maratos-Flier, E.; Pothoulakis, C. Melanin-concentrating hormone as a mediator of intestinal inflammation. Proc. Natl. Acad. Sci. USA 2008, 105, 10613–10618.
[25]  Sala, G.; Dituri, F.; Raimondi, C.; Prevedi, S.; Maffucci, T.; Mazzoletti, M.; Rossi, C.; Iezzi, M.; Lattanzio, R.; Pianetelli, M.; et al. Phospholipase Cγ1 is required for metastasis development and progression. Cancer Res. 2008, 68, 10187–10196, doi:10.1158/0008-5472.CAN-08-1181.
[26]  Clark, J.D.; Schievella, A.R.; Nalefski, E.A.; Lin, L.-L. Cytosolic phospholipase A2. J. Lipid Mediat. Cell Signal. 1995, 12, 83–117, doi:10.1016/0929-7855(95)00012-F.
[27]  Weltzien, H.U. Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim. Biophys. Acta 1979, 559, 259–287, doi:10.1016/0304-4157(79)90004-2.
[28]  Satoh, M.S.; Lindhal, T. Role of poly (ADP-ribose) formation in DNA repair. Nature 1992, 356, 356–358, doi:10.1038/356356a0.
[29]  Earnshaw, W.C.; Martins, L.M.; Kaufmann, S.H. Mammalian caspases: structure, activation, substrates and functions during apoptosis. Annu. Rev. Biochem. 1999, 68, 383–424, doi:10.1146/annurev.biochem.68.1.383.
[30]  Thornberry, N.; Lazebnik, Y.A. Caspases: Enemies within. Science 1998, 281, 1312–1316, doi:10.1126/science.281.5381.1312.
[31]  Rembold, C.M.; Murphy, R.A. [Ca2+]-dependent myosin phosphorylation in phorbol diester stimulated smooth muscle contraction. Am. J. Physiol. 1988, 255, C719–C723.
[32]  Murthy, K.S.; Yee, Y.S.; Grider, J.R.; Makhlouf, G.M. Phorbol-stimulated Ca2+ mobilization and contraction in dispersed intestinal smooth muscle cells. J. Pharmacol. Exp. Ther. 2000, 294, 991–996.
[33]  Nicholson, D.W.; Ali, A.; Thornberry, N.A.; Vaillancourt, J.P.; Ding, C.K.; Gallant, M.; Gareau, Y.; Griffin, P.R.; Labelle, M.; Lazebnik, Y.A.; et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995, 376, 37–43, doi:10.1038/376037a0.
[34]  Tewari, M.; Quan, L.T.; O’Rourke, K.; Desnoyers, S.; Zeng, Z.; Beider, D.R.; Poirer, G.G.; Salven, G.S.; Dixit, V.M. Yamma/CPP32 beta, a mammalian homolog of CED-3, is a Cma-inhibitable protease that cleaves the death substrate by poly(ADP-ribose) polymerase. Cell 1995, 81, 801–809, doi:10.1016/0092-8674(95)90541-3.
[35]  Ihle, J.N. STAT’s signal transducers and activators of transcription. Cell 1996, 84, 331–334, doi:10.1016/S0092-8674(00)81277-5.
[36]  Bromberg, J.F.; Wrzeszczynska, M.H.; Devgan, G.; Zhao, Y.; Pestell, R.G.; Albanese, C.; Darnell, J.F., Jr. STAT3 as an oncogene. Cell 1999, 98, 295–303, doi:10.1016/S0092-8674(00)81959-5.
[37]  Benchimol, S. p53-dependent pathway of apoptosis. Cell Death Diff. 2001, 8, 1049–1051, doi:10.1038/sj.cdd.4400918.
[38]  Hoffman, W.H.; Biade, S.; Zilfou, J.T.; Chen, J.; Murphy, M. Transcriptional repression of the ant-apoptotic surviving gene by wild type p53. J. Biol. Chem. 2002, 277, 3247–3257.
[39]  Kim, P.; Yoshimoto, Y.; Iino, M.; Sasaki, T.; Kirino, T.; Nonomura, Y. Impaired calcium regulation of smooth muscle during chronic vasospasm following subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 1996, 16, 334–341.
[40]  Kim, P.; Yoshimoto, Y.; Nakaguchi, H.; Mori, T.; Asai, A.; Sasaki, T.; Kirino, T.; Nonomura, Y. Increased sarcolemmal permeability in cerebral artery during chronic spasm: An assessment using DNA-binding dyes and detection of apoptosis. J. Cereb. Blood Flow Metab. 1999, 19, 889–897.
[41]  Sidik, K.; Smerdon, M.J. Bleomycin-induced DNA damage and repair in human cells permeabilized with lysophosphatidylcholine. Cancer Res. 1990, 50, 1613–1619.
[42]  Lorenz, J.D.; Watkins, J.F.; Smerdon, M.J. Excision repair of UV damage in human fibroblasts reversibly permeabilized with lysophosphatidylcholine. Mutat. Res. 1988, 193, 167–719, doi:10.1016/0167-8817(88)90047-8.
[43]  Chen, O.; Morimoto, S.; Kitano, E.; Koh, K.; Fukuo, B.; Jiang, S.; Chen, O.; Yasuda, A.; Hirotani, A.; Ogihara, T. Lysophosphatidylcholine causes Ca2+ influx, enhanced DNA synthesis and cytotoxity in cultured vascular smooth muscle cells. Atherosclerosis 1995, 112, 69–76, doi:10.1016/0021-9150(94)05400-D.
[44]  Chai, Y.C.; Howe, P.H.; DiCorleto, P.E.; Chisolm, G.M. Oxidized low density lipoprotein and lysophosphatidylcholine stimulates cell cycle entry in vascular smooth muscle cells: Evidence for release of FGF-2. J. Biol. Chem. 1996, 271, 17791–17797.
[45]  Hong, K.H.; Bonventre, J.O.; O’Leary, E.; Bonventre, J.V.; Lander, E.S. Deletion of cytosolic phospholipase A(2) suppresses Apc(Min)-induced tumorigenesis. Proc. Natl. Acad. Sci. USA 2001, 98, 3935–3939.
[46]  Segal, A.; van Duuren, B.L.; Mate, U. The identification of phorbol myristate acetate as a new metabolite of phorbol myristate acetate in mouse skin. Cancer Res. 1975, 35, 2154–2159.
[47]  Dissanayake, S.K.; Weeraratna, A.T. Detecting PKC phosphorylation as part of the Wnt/calcium pathway in cutaneous melanoma. Methods Mol. Biol. 2008, 468, 157–172, doi:10.1007/978-1-59745-249-6_12.
[48]  Foskett, K.J.; White, C.; Cheung, K.-H.; Mak, D.D.-O. Inositol trisphosphate receptor Ca2+ release channels. Physiol. Rev. 2007, 87, 593–658, doi:10.1152/physrev.00035.2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133