|
计算机应用 2007
Fuzzy support vector machine algorithm with dual membership
|
Abstract:
对现有的模糊支持向量机进行分析,提出一种改进的模糊支持向量机算法——双隶属度模糊支持向量机法(DM-FSVM)。在传统的模糊支持向量机模型中,每一个训练样本的隶属函数中只有一个隶属度,而DM-FSVM中每一个训练样本拥有两个隶属度。它既能保持传统模糊支持向量机的优点,又能充分利用有限样本,增加其分类推广能力。实验表明该算法较好地提高了分类精度。