|
计算机应用 2008
Text information extraction algorithm based on multiple templates hidden Markov model
|
Abstract:
由于训练数据来源的多样化,难以通过学习得到最优的模型参数,因此提出了一种基于多模板隐马尔可夫模型的文本信息抽取算法.该算法首先利用文本排版格式和分隔符等信息,对文本进行分块;然后在分块的基础上,对训练数据进行聚类以形成多个形式的模板(多模板),并对多模板数据训练得到隐马尔可夫初始概率及转移概率参数;最后,用被训练的数据统一训练释放概率参数,结合初始概率、转移概率以及释放概率参数对文本信息进行抽取.实验结果表明,该算法在精确度和召回率指标上比简单隐马尔可夫模型具有更好的性能.