全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Data stream clustering algorithm based on probability density
一种基于概率密度的数据流聚类算法

Keywords: data stream,clustering,Gaussian mixture model,probability-density
数据流
,聚类,高斯混合模型,概率密度,概率密度函数,数据流,聚类算法,probability,density,based,clustering,algorithm,stream,实验,增量式,高斯混合模型,利用,历史,存储,方法,聚类问题,应用,流速,无限,数据量

Full-Text   Cite this paper   Add to My Lib

Abstract:

Data stream is characterized by infinite data and quick stream speed, so traditional clustering algorithm cannot be applied to data stream clustering directly, In view of above questions, a probability-density-based data stream clustering algorithm was proposed. It requires only newly arrived data, not the entire historical data, to be saved in memory. It applies EM algorithm on the newly arrived data and updates probability-density function by incremental Gaussian mixture model. Experimental results show that the algorithm is very effective to solve data stream clustering.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133