全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Classification text with incomplete data based on Bernoulli mixture mode
一种基于Bernoulli混合模型的不完整数据文本分类方法

Keywords: incomplete data,text classification,naive bayes classification,Bernoulli mixture model,Expectation Maximization algorithm(EM)
不完整数据集
,文本分类,朴素贝叶斯分类,Bernoulli混合模型,期望最大化算法,Bernoulli,混合模型,不完整数据,文本分类,分类方法,mode,mixture,based,incomplete,data,text,朴素贝叶斯算法,查全率,准确率,结果,实验,先验概率模型,分类器,权值,利用,参数估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is an important issue to construct the text classification with incomplete data.An improved method that based on Bernoulli Mixture Model and Expectation Maximization(EM) algorithm was introduced.Based on Bernoulli Mixture Model and EM algorithm,by learning the labeled data,the initial value of likelihood function parameter was obtained first.Then the parameter estimate of prior probability model on the classifier with EM algorithm including weight was presented.Finally we got the improved classifier.The results show that our new method is better than the na've bayes text classification in the recall and precision.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133