全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Networked data classification in social media based on manifold learning
基于流形学习的社会化媒体网络数据分类

Keywords: manifold learning,Laplacian eigenmaps,social media,networked data classification,multi-label
流形学习
,拉普拉斯特征映射,社会化媒体,网络数据分类,多标签

Full-Text   Cite this paper   Add to My Lib

Abstract:

Social media provided massive, large-scale heterogeneous networked data. Classification in networked data is a new problem that needed to be solved. Based on latent social dimension model, this paper proposed using Laplacian eigenmaps from manifold learning to extract social dimensions . Experiments show that it is superior to original modularity maximization social dimension model in performance metrics like exact match ratio, micro average and macro average. The algorithm can capture implicit user relations better and analysis Web user behavior better.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133