全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dynamic Deployment of Wireless Sensor Networks by Biogeography Based Optimization Algorithm

DOI: 10.3390/jsan1020086

Keywords: biogeography-based optimization, wireless sensor networks, dynamic deployment, binary detection model

Full-Text   Cite this paper   Add to My Lib

Abstract:

As the usage and development of wireless sensor networks increases, problems related to these networks are becoming apparent. Dynamic deployment is one of the main topics that directly affects the performance of the wireless sensor networks. In this paper, biogeography-based optimization is applied to the dynamic deployment of static and mobile sensor networks to achieve better performance by trying to increase the coverage area of the network. A binary detection model is considered to obtain realistic results while computing the effectively covered area. Performance of the algorithm is compared with that of the artificial bee colony algorithm, Homo-H-VFCPSO and stud genetic algorithm that are also population-based optimization algorithms. Results show biogeography-based optimization can be preferable in the dynamic deployment of wireless sensor networks.

References

[1]  Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292–2330.
[2]  Pilloni, V.; Atzori, L. Deployment of distributed applications in wireless sensor networks. Sensors 2011, 11, 7395–7419, doi:10.3390/s110807395.
[3]  Aitsaadi, N.; Achir, N.; Boussetta, K.; Pujolle, G. Artificial potential field approach in WSN deployment: Cost, QoM, connectivity, and lifetime constraints. Comput. Netw. 2012, 55, 84–105.
[4]  Li, Q.Q.; Gong, H.G.; Liu, M.; Yang, M.; Zheng, J. On prolonging network lifetime through load-similar node deployment in wireless sensor networks. Sensors 2011, 11, 3527–3544.
[5]  Thepvilojanapong, N.; Ono, T.; Tobe, Y. A Deployment of fine-grained sensor network and empirical analysis of urban temperature. Sensors 2010, 10, 2217–2241, doi:10.3390/s100302217.
[6]  Ozturk, C.; Karaboga, D.; Gorkemli, B. Artificial bee colony algorithm for dynamic deployment of wireless sensor networks. Turk. J. Elec. Eng. Comp. Sci. 2012, 20, 255–232.
[7]  Zheng, W.; Shu, J. An efficient relocation algorithm in mobile sensor network based on improved artificial bee colony. Adv. Electron. Commun. Web Appl. Commun. 2012, 148, 441–448, doi:10.1007/978-3-642-28655-1_70.
[8]  Lavanya, D.; Udgata, S.K. Swarm intelligence based localization in wireless sensor networks. Lect. Notes Comput. Sci. 2011, 7080, 317–328.
[9]  Abderrahim, T.; Esteban, E.L.; Javier, V.A.; Joan, J.H.; Mohamed, E. A Novel Approach for Optimal Wireless Sensor Network Deployment. In Proceedings of the Symposium on Progress in Information & Communication Technology (SPICT’09), Kuala Lumpur, Malaysia, 7–8 December 2009; pp. 40–45.
[10]  Yu, S.; Wang, R.; Xu, H.K.; Wan, W.G.; Gao, Y.Y.; Jin, Y.L. WSN Nodes Deployment Based on Artificial Fish School Algorithm for Traffic Monitoring System. In Proceedings of the IET International Conference on Smart and Sustainable City (ICSSC 2011), Shanghai, China, 6–8 July 2011; pp. 201–205.
[11]  Wang, X.; Wang, S.; Ma, J.J. Dynamic Deployment Optimization in Wireless Sensor Networks. Lect. Note Contr. Inf. Sci. 2006, 344, 182–187.
[12]  Wang, X.; Wang, S.; Ma, J.J. An improved co-evolutionary particle swarm optimization for wireless sensor networks with dynamic deployment. Sensors 2007, 7, 354–370.
[13]  Wang, X.; Wang, S. Hierarchical deployment optimization for wireless sensor networks. IEEE Trans. Mob. Comput. 2011, 10, 354–370.
[14]  Rani, K.S.S.; Devarajan, N. Optimization model for sensor node deployment. Eur. J. Sci. Res. 2012, 70, 491–498.
[15]  Ahmed, N.; Kanhere, S.S.; Jha, S. A pragmatic approach to area coverage in hybrid wireless sensor networks. Wirel. Commun. Mob. Comput. 2011, 11, 23–45, doi:10.1002/wcm.913.
[16]  Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 6, 702–713, doi:10.1109/TEVC.2008.919004.
[17]  Yin, M.H.; Li, X.T. A hybrid bio-geography based optimization for permutation flow shop scheduling. Sci. Res. Essays 2011, 6, 2078–2100.
[18]  Li, X.T.; Wang, J.Y.; Zhou, J.P.; Yin, M.H. A perturb biogeography based optimization with mutation for global numerical optimization. Appl. Math. Comput. 2011, 218, 598–609.
[19]  Li, X.T.; Yin, M.H. Hybrid differential evolution with biogeography based optimization for design of a reconfigurable antenna array with discrete phase shifters. Int. J. Antenn. Propag. 2011.
[20]  Liu, T.; Li, Z.; Xia, X.; Luo, S. Shadowing Effects and Edge Effect on Sensing Coverage for Wireless Sensor Networks. In Proceedings of the 5th International Conference on Wireless CommunicationsNetworking & Mobile Computing, Beijing, China, 24–26 September 2009; pp. 1–4.
[21]  Hexsel, B.; Chakraborty, N.; Sycara, K. Coverage Control for Mobile Anisotropic Sensor Networks. In Proceedings of2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2878–2885.
[22]  Cortes, J.; Martinez, S.; Karatas, T.; Bullo, F. Coverage Control for Mobile Sensing Networks. IEEE Trans. Robot. Automat. 2004, 20, 243–255, doi:10.1109/TRA.2004.824698.
[23]  Mihaylova, L.; Lefebvre, T.; Bruyninckx, H.; Gadeyne, K. Active Sensing for Robotics-A Survey. In Proceedings of the 5th International Conference on Numerical Methods and Applications, Borovets, Bulgaria, 20–24 August 2002; pp. 316–324.
[24]  Zhong, M.Y.; Cassandras, C.G. Distributed coverage control and data collection with mobile sensor networks. IEEE Trans. Robot. Automat. 2011, 56, 2445–2455.
[25]  Chakrabarty, K.; Iyengar, S.S.; Qi, H.; Cho, E. Grid coverage for surveillance and target location in distributed sensor networks. IEEE Trans. Comput. 2002, 51, 1448–1453, doi:10.1109/TC.2002.1146711.
[26]  Simon, D. The Matlab Code of Biogeography-Based Optimization. 2008. Available online: http://academic.csuohio.edu/simond/bbo/ (accessed on 27 March 2012).
[27]  Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-TR06; Computer Engineering Department, Engineering Faculty, Erciyes University: Kayseri, Turkey, 2005.
[28]  Khatib, W.; Fleming, P. The stud GA: A mini revolution? Lect. Notes Comput. Sci. 1998, 1498, 683–691.
[29]  Ozturk, C.; Karaboga, D.; Gorkemli, B. Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm. Sensors 2011, 11, 6056–6065.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133