|
计算机应用研究 2011
Analysis of ant colony clustering combination based on information entropy
|
Abstract:
摘要:提出了一种基于信息熵的蚁群聚类算法,将信息熵引入到LF算法中,数据对象的归属由信息熵来决定,减少了参数,测试并验证了算法的有效性。同时,信息熵的蚁群算法早期数据分散收敛过慢,容易陷入局部最优等缺点,提出了一种蚁群聚类组合方法得以改进。改进思路是引入K-means作为熵蚁群算法的预处理过程。通过K-means快速、粗略地确定聚类中心,利用K-means方法的结果作为初值,再进行改进的熵蚁群算法聚类。有效地解决了蚁群算法早期收敛过慢等问题。